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75006 Paris, France

Received 19 september 2007 / Received in final form 28 January 2008
Published online 7 March 2008 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2008

Abstract. In a Hodgkin-Huxley neuron model driven just above threshold, external noise can increase
both jitter and latency of the first spike, an effect called “noise delayed decay” (NDD). This phenomenon
is important when considering how neuronal information is represented, thus by the precise timing of
spikes or by their rate. We examine how NDD can be affected by network activity by varying the model’s
membrane time constant, τm. We show that NDD is significant for small τm or high network activity, and
decreases for large τm, or low network activity. Our results suggest that for inputs just above threshold, the
activity of the network constrains the neuronal coding strategy due to, at least in part, the NDD effect.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 87.10.+e
General theory and mathematical aspects – 87.16.-b Subcellular structure and processes

1 Introduction

Neurons transmit information about their inputs by trans-
forming them into the spike trains, and the question of
which coding scheme is represented by these trains is
much debated. In principle, information in spike trains
may be in the average rate of firing [1,2] or in the timing
of spikes [3,4]. However, a temporal coding scheme can
make more efficient use of the capacity of neuronal con-
nection than those that rely simply on the firing rate [5].
Experimental studies have indicated a significant role for
the precise timing of the spikes in neuronal coding [6,7].
Reinagel and Reid [8] also indicated that the precise spike
times contain more information about the input than fir-
ing rate alone based on the information-theoretical anal-
yses of the neuronal spike trains in the lateral geniculate
nucleus.

In the context of temporal coding, Pankratova et al. [9]
recently analyzed the influence of external noise on the
timing of the first spike with a Hodgkin-Huxley (H-H)
neuronal model driven by a noisy suprathreshold peri-
odic forcing, and showed that although the noise increases
the first spike latency and thus delays signal detection, a
proper choice of the frequency for the suprathreshold pe-
riodic forcing could minimize this effect. They also plot-
ted the dependence of the mean latency on the noise
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for different values of the driving frequencies, obtaining
a non-monotonic behavior at the frequency boundaries
of the suprathreshold spiking regime. At these bound-
aries, and at small noise amplitudes, the mean latency
is mainly insensitive to the noise. As the noise increases
past a critical value, however, a further increase strongly
increases the mean latency, thus imparting a significant
delay in the stimulus detection by the neuron. After the
latency reached a maximum value, a further increase in
the noise caused a decrease of the latency. The authors
attributed the noise-dependent increase of the latency to
a phenomenon called noise delayed decay (NDD), which
is described in potential systems [10], and suggested that
their results demonstrated the first example of NDD in
excitable systems.

Given the significant impact of NDD on first-spike tim-
ing, and thus its importance for neuronal coding, our aim
here is to extend this analysis to the in vivo setting of an
active network. Neurons in vivo are embedded in a net-
work of active cells, where each neuron receives thousands
of synaptic inputs [11]. This massive input can signifi-
cantly modify the integrative capabilities of the neuron,
most fundamentally by a decrease in the membrane time
constant (τm) due to an increase in the average membrane
conductance. In this context, Bernander et al. [12] studied
the overall effect of the synaptic input on the temporal in-
tegrative properties of individual cortical pyramidal cells,
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and found that realistic values of synaptic input can de-
crease the effective time constant by a factor of ten. Rapp
et al. [13] studied the same problem by considering parallel
fiber background activity on the cable properties of cere-
bellar Purkinje cell and arrived at similar conclusions. In
the present paper, we studied how the NDD effect changes
with the network activity, by changing the time constant
of the neuron model.

2 Model and methods

We use the same model and the parameters by Pankra-
tova et al. [9], where the time evolution of the membrane
potential for the Hodgkin-Huxley model [14] is given as
follows:

Cm
dν

dt
+ GNa(ν − νNa) + GK(ν − νK)

+ GL(ν − νL) = A sin(2πft) + ξ(t) (1)

where ν denotes the deviation of the membrane po-
tential from its equilibrium value in units of mV, and
Cm = 1 µF cm−2 is the membrane capacity. GNa, GK

and GL represent sodium, potassium and leakage conduc-
tances, respectively. νNa = 115 mV, νK = −12 mV and
νL = 10.6 mV are the reversal potentials for the sodium,
potassium and leakage channels, respectively. A denotes
the amplitude of the sinusoidal forcing current, which is
set to 4 µA/cm2 as by Pankratova et al. [9]. ξ(t) repre-
sents a white Gaussian noise with zero mean and an auto-
correlation function 〈ξ(t)ξ(t + τ)〉 = Dδ(t). In the model,
the leakage conductance is assumed to be constant, GL,
and determines the average or resting membrane time con-
stant by the relation τm = Cm/GL, whereas the sodium
and potassium conductances dynamically change accord-
ing to the following equation:

GNa = gmax
Na m3h, GK = gmax

K n4 (2)

where gmax
Na = 120 mS cm−2 and gmax

K = 36 mS cm−2 are
the maximal sodium and potassium conductances, respec-
tively. m and h denotes the activation and inactivation
gating variables for the sodium channel, respectively, and
the potassium channel includes an activation gating vari-
able, n. In the H-H model, activation and inactivation
gating variables change over time in response to the mem-
brane potential with first-order differential equations as
follows [14]:

dm

dt
= αm(1 − m) − βmm, (3a)

dh

dt
= αh(1 − h) − βhh, (3b)

dn

dt
= αn(1 − n) − βnn, (3c)

where α and β are the voltage-dependent rate functions
defined in units of (ms) as follows [14]:

αm = 0.1
25 − ν

exp[(25 − ν)/10] − 1
, βm = 4 exp(−ν/18),

(4a)

αh = 0.07 exp(−ν/20), βh =
1

1 + exp[(30 − ν)/10]
, (4b)

αn = 0.01
10 − ν

exp[(10 − ν)/10]− 1
, βn = 0.125 exp(−ν/18).

(4c)

We define the latency to the first spike as the time, rela-
tive to stimulus start time, of the first upward crossing of
the membrane potential past a fixed detection threshold
value, taken here as 20 mV, as by Pankratova et al. [9].
We obtain the mean latency of an ensemble of first spikes
by averaging their latencies overrealizations as follows:

〈t〉 =
1
N

N∑

i=1

ti (5)

where ti is the response time for ith realization. We also
consider the standard deviation of the latencies, or tem-
poral jitter, as follows:

σL =
√
〈t2〉 − 〈t〉2 (6)

where〈t2〉represents the mean squared latency.
In order to calculate both the mean latency and jit-

ter, we averaged the first spike latencies over N = 3 000
realizations. In the simulations, we assumed that the ini-
tial conditions for each realization are the same as in [9],
namely that the neuron is in its stable resting state (ex-
ternal current set to 0).

3 Results

The firing current threshold of a Hodgkin-Huxley neu-
ron subject to periodic forcing changes in a frequency-
dependent manner for a fixed stimulus strength [9]. For a
sinusoidal stimulus with an amplitude of 4 µA/cm2, the
model studied here displays a suprathreshold regime for a
frequency range of 16–144 Hz [9]. Since the NDD effect is
maximal at the frequency boundaries of the suprathresh-
old regime, we first reexamined the behaviour of the model
at a stimulus frequency of 18 Hz, that is just above thresh-
old, over a large range of the external noise, following
Pankratova et al. [9] (Fig. 1). In the absence of noise,
the model neuron fires the first-spike at 11 ms. We then
computed the mean latency and jitter for different val-
ues of the external noise. As Pankratova et al. [9] showed,
both the mean latency and jitter exhibit a non-monotonic
behavior: increasing with the noise, reaching some max-
imum and then decreasing. When the noise strength is
small, the mean latency values are close to the determin-
istic value, and the jitter is below 1 ms, indicating high
temporal precision. As the noise strength increases, the
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Fig. 1. The mean latency and jitter versus the noise inten-
sity in response to the suprathreshold periodic stimulus with
a frequency of 18 Hz and a magnitude of 4 µA/cm2.

NDD effect strongly appears: Both the mean latency and
jitter increase substantially, displaying a pronounced peak
as a function of noise strength. Given that the ratio of the
peak latency over the deterministic value is about 2.5,
with a jitter of about 26 ms, the NDD effect can cause the
neuron to fire with a very low temporal precision. After
reaching some maximum for the mean latency and jitter, a
further increase in the noise intensity decreases both. Al-
though the mean latency eventually decreases to a value
(around 4.5 ms) which is below the deterministic value
(11 ms), the jitter saturates at a non-zero value (around
3 ms), indicating a significant distribution of the latency
values even when the noise accelerates the overall response
of the neuron.

We then investigated how the NDD effect might be
influenced by network activity, by changing the time con-
stant of the neuron model and measuring spike latencies
to the same 18 Hz periodic forcing. The leakage con-
ductance of the model, GL, was set to values between
0.01–0.3 mS cm−2, corresponding to a range of membrane
time constants from 100 ms to 3.3 ms, consistent with
experimentally measured values in neocortical pyramidal
neurons [15–17]. We computed the normalized mean la-
tency and jitter for five different values of the membrane
time constant (Fig. 2; for comparison, the membrane time
constant τm in [9] is 3.3 ms). We find that as the noise in-
creases from small values, the mean latency remains con-
stant, near the deterministic one, over a larger range of
the noise intensity for larger values of τm (Fig. 2a). The
jitter displays a similar behavior, being less dependent on
the noise, and small, for larger membrane time constants,
indicating that the model neuron fires the first-spike with
higher precision in the absence of the synaptic input. Al-
though for the larger values of τm (10–100 ms) high noise
intensities increase mean spike latency, this occurs over
a narrow range of the higher noise strength with a lower

(a)

(b)

Fig. 2. The statistics of the latency for five different values
of the time constant (f = 18 Hz): (a) the normalized mean
latency versus the noise strength, (b) the jitter versus the noise
strength.

peak (a smaller NDD effect), beyond which a further in-
crease in the noise results in a decrease of the mean la-
tency below the deterministic value. In addition, there is
no qualitative difference in the latency versus noise for
these larger time constants. We also observed that there
is no almost a quantitative difference in the latency and
its jitter versus noise for both time constants of 50 and
100 ms.

In contrast, when τm is smaller due to the overall
synaptic activity, a significant NDD effect on the first-
spike timing emerges. For small values of τm, a one mil-
lisecond decrease in τm strongly amplifies the NDD effect;
increasing the maxima of the mean latency and jitter, and
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Fig. 3. The normalized mean latency versus the noise inten-
sity in response of the neuron model with a time constant of
100 ms to the suprathreshold periodic stimulus of five differ-
ent frequencies (5, 6, 18, 60 and 85 Hz). The frequencies of 5
and 6 Hz are just above the lower frequency threshold of 4 Hz,
18 Hz is well within the suprathreshold regime, and 60 and
85 Hz are close to the upper frequency threshold of 86 Hz.

decreasing the minimum noise intensity for which NDD is
evident.

For the H-H model, an increase in the membrane time
constant changes the frequency range of the suprathresh-
old periodic current threshold, shifting the lower boundary
for firing toward a lower frequency. Thus, for a fixed input
of some frequency and amplitude that is above threshold
for a fast τm, a slower time constant results in that input
being increasingly suprathreshold, which in turn is suffi-
cient to decrease the NDD effect. To explore this relation-
ship further, we then investigated how the membrane time
constant per se affected NDD independently of a change in
the current threshold, by adjusting the input frequency to
bring it again to the just suprathreshold range for a slow
membrane time constant of 100 ms. For this value of τm

and the same input strength as before, the suprathreshold
regime covers a frequency range of 4–86 Hz, as compared
to 16–144 Hz when τm is 3.3 ms. We examined the NDD
effect for suprathreshold frequencies near both the lower
and upper boundaries (5, 6, 60 and 85 Hz), as well as for
the now strongly suprathreshold frequency of 18 Hz, and
we computed the normalized mean latency as a function of
external noise as before (Fig. 3). With no noise, the neuron
fires the first-spike at 22, 19, 12, 26 and 43 ms, correspond-
ing to input frequencies of 5, 6, 18, 60 and 85 Hz, respec-
tively. The mean latency remained near the deterministic
value until over a narrow range of strong noise we observed
a smaller increase in mean latency (a smaller NDD effect)
and then a decrease in latency for even larger noise, similar
to that found earlier for the larger values of τm with the
18 Hz input (Fig. 2a). Increasing the frequency toward the
upper boundary (60 and 85 Hz) decreases the minimum
noise strength for which the NDD effect is evident. How-

ever, we find that the peak value of the latency almost
gets similar values for all frequencies regardless of their
closeness to the current threshold. These results indicate
that the NDD effect is not only dependent on the close-
ness of the input to threshold, but also on the membrane
time constant, which serves as a scaling factor, such that
the NDD effect is large when τm is small, and vice versa.

4 Discussion

We examine how the NDD effect of a H-H neuron subject
to periodic forcing can be affected by network activity.
The firing current threshold of a H-H neuron subject to
a periodic forcing changes in a frequency-dependent man-
ner [9], such that a stimulus with some fixed amplitude is
suprathreshold within a limited frequency range. Stimuli
just inside the lower and upper boundaries of that range
are just above threshold, which is a requirement for the
significant NDD effect. For an input near the lower bound-
ary of the suprathreshold range, we considered the impact
of different levels of network activity by varying τm. We
also examined the system behavior for different input fre-
quencies, near threshold and well suprathreshold, during
low network activity, thus with a large value of τm. Our
results illustrate how the overall activity of a neuronal net-
work can alter the temporal integrative properties of the
individual neurons in terms of the NDD effect of the first-
spike timing. An increase in the time constant changes the
frequency range of the suprathreshold current threshold,
shifting it towards lower frequencies. Therefore, for a given
input just above the lower suprathreshold boundary, an
increase in the time constant causes disappearance of the
NDD effect in part because the stimulus becomes increas-
ingly suprathreshold (Fig. 2). We also showed, however,
that a large membrane time constant decreases the NDD
effect even when the input is kept near the thresholds
(Fig. 3) defined by the lower and upper frequency bound-
aries of the suprathreshold regime. Therefore, in addition
to the fact that the NDD effect only emerges near thresh-
old, we suggest that the membrane time constant serves
as a scaling factor by increasing or decreasing the NDD
effect when it exists. When the membrane time constant
is small, the neuron responds quickly to input fluctuations
instead of temporally integrating them, whereas a longer
time constant enables the cell to more strongly integrate
the input. In this context, the NDD effect on first-spike
timing depends on the higher sensitivity of the cell to noise
when the time constant is low. As the time constant in-
creases, the sensitivity of the cell decreases, and therefore
the NDD effect decreases, even for just suprathreshold in-
puts. We conclude that the NDD effect on first-spike tim-
ing near the frequency boundaries of the suprathreshold
spiking regime is a function of both the noise as well as the
overall activity of the network, acting through the mem-
brane time constant.

For an input whose frequency is just below the upper
suprathreshold boundary, increasing the membrane time
constant from a small value will also eliminate the NDD
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effect as for inputs near the lower boundary, but for a dif-
ferent reason. Since an increase in the time constant shifts
the entire suprathreshold regime toward lower frequencies,
an input near the upper boundary for a fast membrane
time constant will fall into the subthreshold regime for
a slow time constant. Thus, in this case the NDD effect
disappears simply because the input (with no noise) is no
longer able to trigger spikes.

Robustness of spike timing to physiological noise is
suggested as a prerequisite for a spike-timing as opposed
to a spike-rate code [18]. Our results suggest that for a pe-
riodic forcing that is just above threshold, the NDD effect
may limit the neuron to spike-rate coding when the mem-
brane time constant is small. The NDD effect decreases
either when the membrane time constant is large or if the
input becomes strongly suprathreshold, suggesting oper-
ating regimes in which the neuron may also exploit a spike
time code. Since the overall level of the synaptic input is
the major determinant of the time constant [12], these re-
sults suggest in particular that the functional code used
by neurons for inputs that are just suprathreshold may
rely qualitatively on the network activity.

5 Conclusion

In a Hodgkin-Huxley neuron driven just above threshold,
external noise can increase not only the jitter but also
the latency of the first spike, an effect called “noise de-
layed decay” (NDD). We show that the NDD effect on
the first-spike timing near the frequency boundaries of the
suprathreshold spiking regime is not only a function of the
noise, but also a function of the overall activity of the net-
work as it modulates the membrane time constant of the
cell.
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