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Cortical neurons in-vivo operate in a continuum of overall
conductance states, depending on the average level of background
synaptic input throughout the dendritic tree. We compare how
variability, or £uctuations, in this input a¡ects the statistics of the
resulting ‘spontaneous’ or ‘background’ ¢ring activity, between
two extremes of the mean input corresponding to a low-conduc-
tance (LC) and a high-conductance (HC) state. In theHC state, we

show that both ¢ring rate and regularity increase with increasing
variability. In the LC state, ¢ring rate also increases with input
variability, but in contrast to the HC state, ¢ring regularity ¢rst
decreases and then increases with an increase in the variability.
At high levels of input variability, ¢ring regularity in both states
converge to similar values. NeuroReport 18:1371^1374 �c 2007
LippincottWilliams &Wilkins.
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Introduction
The analysis of stochastic mechanisms on cortical neurons is
crucial for understanding cortical function and the nature of
the neural code. Stochasticity is manifested most obviously
by the highly variable spiking response of neurons in vivo to
a repeated sensory input [1,2]. In response to injected
currents, evoked spikes in vitro are much more regular than
those in vivo [3,4], and as the in-vitro procedure greatly
diminishes the spontaneous synaptic activity observed
in vivo [5], the increased in-vivo spike variability is probably
due to the variability of synaptic inputs [5,6]. In fact, cortical
neurons in vivo are subject to varying overall levels of
stochastic synaptic background activity [7], which is
particularly intense during active states of the brain, where
the neurons fire at high levels [8]. To understand the
interaction between neural message and noise, it is
important to explore the relation between this activity and
any resulting ‘quiescent’ or ‘spontaneous’ spikes. Thus,
following the description of Pospischil and colleagues [9],
we can consider the nature of spontaneous firing in cortical
neurons between two extreme regimes mediated by
stochastic synaptic input: low-conductance (LC) and high-
conductance (HC) states.

Statistical properties of the integrated synaptic input,
including the average and variance, can have significant
effects on the neuron’s input–output characteristics [5,10,11].
In the HC state, mean synaptic background activity
accounts for up to 80% of the input conductance of the cell
[10], with a mix of excitation and inhibition that results in

typical in vivo ‘resting potentials’ about 15 mV depolarized
from the in-vitro condition. Completely uncorrelated back-
ground synaptic inputs lead to small-amplitude fluctuations
in the membrane potential, whereas increasing correlations
lead to large amplitude fluctuations [12], underlining the
direct link between synaptic population statistics and the
variability of the integrated input. In HC states this variability
typically produces B10 mV voltage fluctuations, with a
standard deviation of B4 mV [5,10,11]. Synaptic correlations
can also influence the firing rate and variability of a
postsynaptic neuron [13], and cortical neurons are able to
detect changes in the correlation among the synaptic inputs
on millisecond timescales [14]. In this computational study,
we compare how the variability in the synaptic background
activity in the two extreme conductance states affects the
regularity of spontaneous firing of cortical neurons.

Methods
Various computational models have been proposed to
reproduce the stochastic membrane potential fluctuations
characterizing the dynamics of neurons in vivo. Biophysi-
cally detailed models can include the dendritic morphology,
allowing the explicit simulation of a large number
of excitatory and inhibitory synaptic inputs underlying
background activity [10,15]. Recently, Destexhe et al.
[15] introduced a point-conductance model of back-
ground activity, which we use here, that considers a
single-compartment neuron with excitatory and inhibitory
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conductances that represent the sum of a large number
of synaptic inputs. The membrane equation is described
as [15]:

C
dV

dt
¼ �INa � IKd � IM � ILeak �

1

a
Isyn; ð1Þ

where C¼1mF/cm2 is the specific membrane capacitance, V is
the membrane potential and a¼34636mm2 is the total
membrane area for a layer VI cortical pyramidal cell [15].
INa is the voltage-dependent Na+ current, IKd is the delayed-
rectifier K + current, IM the noninactivating K + current, and
ILeak the leak current. The parameters of the passive and
voltage-dependent currents are taken from Ref. [15].

The total synaptic current in Eq. (1), Isyn, is decomposed
into a sum of two independent currents [15]:

Isyn ¼ geðtÞðV � EeÞ þ giðtÞðV � EiÞ; ð2Þ

where ge(t) and gi(t) are time-dependent global excitatory
and inhibitory conductances, respectively, with reversal
potentials of Ee¼0 mV and Ei¼�75 mV. The synaptic
conductances are described by Ornstein–Uhlenbeck sto-
chastic processes [15]:

dgy

dt
¼ �

1

�y
ðgy � gy0Þ þ

ffiffiffiffiffiffiffi
2s2

y

�y

s
�ðtÞ; y ¼ e; if g; ð3Þ

where ge0 and gi0, te and ti, and se and si, are the average
conductances, the time constants, and the standard devia-
tions, respectively, for the excitatory and inhibitory inputs,
respectively. w(t) is a Gaussian white noise process of unit
standard deviation and zero mean. The parameter values
of Eq. (3) were taken as gi0¼ge0¼12.1 nS, te¼2.73 ms,
ti¼10.49 ms, and si¼26.4 nS for the LC state, with the HC
state differing only by a higher value of gi0¼57.3 nS [7]. In this
study, we were interested in the relationship between the
input variability and spike variability, thus we stimulated the
neuron with different values of se ranging between 1.5 and
72 nS (se¼12 nS corresponds to a standard deviation of the
membrane voltage of B4 mV in the HC state). Varying se also
mimics the effect of input correlations between individual
synapses. In particular, there is a one-to-one correspondence
of se and the correlation coefficient of the synaptic input
[5,15]; for example, with the present model parameters, values
of se of 5 and 11 nS give similar voltage dynamics of a
detailed model with synaptic correlations of 0.1 and 0.9,
respectively (Fig. 5 in Ref. [5]).

To measure the regularity of the spiking activity, we used
the coefficient of variation (CV) of the interspike intervals
(ISIs), a commonly used measure of spike train regularity
[1,3,15,16–20]:

CV ¼
sISI

ISIh i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ISI2
� �

� ISIh i2
q

ISIh i
; ð4Þ

where /ISIS and /ISI2S denote the mean and the mean
squared ISIs, respectively. The timing of an action potential is
determined by the upward crossing of the membrane voltage
past a detection threshold of �10 mV. All simulations were
made using the NEURON simulation environment [21].

Results
We performed computations to examine the effect of
variability of the synaptic input on the regularity of spiking
activity of cortical neurons, at two extreme regimes of

overall background synaptic input: LC and HC states.
Specifically, we varied the standard deviation of the
excitatory conductance, se, while maintaining a constant
average conductance of both the excitatory and inhibitory
input. In the LC state the mean excitatory and inhibitory
conductances are equal, whereas in the HC state the mean
inhibitory conductance is several times larger than the mean
excitatory conductance [9].

The mean and standard deviation of the CV of ISIs were
collected for 100 simulation trials of 200 s duration each,
for 28 values of se, in the range of 1.5–72 ns, for both
conductance states (Fig. 1). In HC states, the mean CV
values are near 1 for small input variability, decreasing
almost linearly as the variability increases. In contrast, the
LC state demonstrates a resonance-like relation between
input variability and spiking regularity: as the variability in
the excitatory input increases, the CV of ISIs first increases
and then decreases. It may also be noted that although the
CV values in LC states are smaller than those in HC states,
they still fall in the physiological range of 0.5–1.0 reported
by Softky and Koch [1] over the entire range of values of se

in the simulations.
Larger values of the input variability decrease the

difference between the CV measures of the two conductance
states, eventually converging to a value around 0.7 (Fig. 1),
consistent with the measured variability of spontaneous
discharge of cortical neurons in awake animals [1,2,15],
suggesting that larger values of the input variability shifts
the firing characteristics of LC states toward that of HC states.

The error bars in Fig. 1 show a significant variability of the
regularity measure, CV, from trial to trial, consistent with
experimental data, indicating that the degree of irregularity
of neuronal firing is itself noisy [16]. Although increasing
the variability in the synaptic input has different effects on
the regularity between the LC and HC states, for both states
there is a consistent reduction in the standard deviations of
CV with increased input variability. However, whereas in
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Fig. 1 Mean CV of interspike intervals vs. se in LC and HC states of a
point neuron model. Error bars show standard deviations over 100 trials
of 200 s each. Inset: sample voltage traces for HC states. (a) CV¼0.92,
¢ring rate F¼10Hz and average membrane potential VM¼�67.174.8mV
for se¼0.015mS. (b) CV¼0.87, F¼27Hz and VM¼�68.275.5mV for
se¼0.03mS. (c) CV¼0.73, F¼54Hz and VM¼�69.776.2mV for
se¼0.07mS. CV, coe⁄cient of variation; HC, high conductance; LC, low
conductance.
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the LC state, the dispersion of the CV is small over the entire
range of the input variability and only weakly sensitive to
the variability, in the HC state the variance of the CV is large
for small input variability, dropping rapidly as the
variability increases, and eventually becoming similar to
that of the LC state.

We also examined the spike CV vs. firing frequency
curves for both conductance states (Fig. 2), finding CV
values in the physiological range of 0.5–1.0 [1] for high firing
rates. As would be expected from the fact that the HC and
LC states differ by the larger amplitude of inhibition in the
former, the mean firing rate at a given value of the input
variability is greater for the LC state (Fig. 3). This figure also
shows that increasing input variability, which gives larger
membrane voltage fluctuations, increases the firing rate in
both conductance states [14] (see inset of Fig. 1).

Discussion
In this study, we compared the effect of variability in the
synaptic background activity on the regularity of spikes
evoked by that activity, of the cortical neuron at the two
extreme conductance regimes, corresponding to the LC
and HC states. We showed that CV of ISIs fall in the
physiological range of 0.5–1.0 reported by Softky and Koch
[1] for both conductance states (Fig. 1) for input parameters
corresponding to a large range of input fluctuations.
Increasing the variability of the input causes an increase of
firing rates (Fig. 3) and decreases the noisiness of CV in both
conductance states (Fig. 1). In the HC state, the spike CV
decreases with increasing input variability, but in the LC
state the spike CV increases with an initial increase in the
input variability and decreases with a further increase in the
variability. The spike CV in the two conductance states
approach a similar value for large values of the variability
and in particular, the spike CV decreases with higher firing
rates (Figs 1 and 2), as observed experimentally [1] and
computationally [22].

The spike output CV in the HC state is always greater
than that in the LC state (Fig. 1). As the neuron in the HC
state has stronger inhibition, this suggests that one role of
background inhibitory activity is to increase the firing
variability for the same input variability relative to the LC
state [16] or alternatively, that the background inhibition
allows the neuron output to more closely replicate the
variations in the input.

The only source of variability in this study is from the
excitatory synaptic input, quantified by the standard
deviation of the Ornstein–Uhlenbeck input process [Eq. 3].
With respect to firing variability, one might expect that the
output CV of a neuron would tend to increase for a larger
input variability, but in this study, we find more complex
behavior. This result may be understood by first considering
events obtained by applying a threshold to a continuous
random process. The upper bound on CV of the event
interval, 1, is reached when there is no memory in the
system. As this applies for an arbitrary probability
distribution feeding the threshold, increasing the standard
deviation of that distribution, as in the present case, does
not change CV of the intervals. Increasing the standard
deviation does increase the probability of the passing
threshold, and thus increases the event rate, precisely what
we see in both conductance states (Fig. 3).

Any mechanism that adds memory to the process will
tend to reduce the CV of the event intervals – here there are
three mechanisms that impact the results. Two of these tend
to reduce CV as the firing frequency increases. The first is
memory in the input, specifically the limited bandwidth of
the Ornstein–Uhlenbeck input processes, parameterized by
the (nonzero) values of te and ti. The second is memory in
the output, specifically the refractory period of spike
generation, or the minimum time between two spikes
imposed by the kinetics of the Na + and K + currents. As
firing frequency increases, the refractory period becomes
more significant relative to the diminishing ISI, contributing
to a reduction in the output CV [22].

The third mechanism for reducing output CV is the low-
pass filter characteristic of the cell membrane, which can be
considered as a memory mechanism interposed between the
two described above. The effect of the membrane filter is
relevant at low-firing rates, specifically low amplitudes of the
input variations, because the standard deviation term in Eq. 3
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LC andHC states.Eachpointwas computedby a simulation of 200 s of the
point-conductance model. CV, coe⁄cient of variation; HC, high conduc-
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is directly related to the high-frequency content of the
Ornstein–Uhlenbeck input process. Thus, the slower the
cutoff frequency of the filter, the larger the increase in
the output CV for a given increase in the input variability,
as the stronger high frequency content of the larger variations
are better ‘seen’ by the spike threshold. As the LC state has a
longer average membrane time constant, or stronger ‘mem-
ory’, and therefore stronger low-pass filtering, the frequency-
dependent attenuation of the input ‘information’ will be
stronger in the LC state than in the HC state. By the same
token, the faster membrane time constant of the HC state, or
less ‘memory’, causes the variability of the membrane
potential to be more directly slaved to the variability of the
synaptic input, as compared with the LC state.

The net result is competing state-dependent relationships
between input fluctuations and output variability. A positive
dependency due to membrane filtering dominates for low
values of the input variability (thus low firing rates) in the LC
state but not in the HC state, because the two states differ
precisely by their membrane properties. A negative depen-
dency due to the bandwidth of the input and spike
refractoriness dominates for high values of the input
variability (thus high firing rates) in both conductance states,
because both mechanisms are independent (to a first
approximation) of the membrane’s average conductance. As
mentioned, the variability of the input process in the model,
or the size of the fluctuations, may be related to the strength of
the correlations between synapses in a full model. As neurons
in vivo can, in principle, operate between the two extreme
conductance states, the physiological implication is a state-
dependent operational range for how a neuron’s quiescent
firing state reflects the inherent correlations of the network
bombardment, as opposed to simply the mean of that activity.

Conclusion
We show that the regularity of spike trains and the firing
rate of cortical neurons increase in HC states with the
increasing variability of the background synaptic input. In
LC states, although firing rate increases with the increasing
variability, firing regularity decreases with the initial
increase in the variability and increases with further
increase of the input variability. The qualitative difference
between these relationships for the LC and HC states
suggests that the functional transmission by cortical neurons
of network variability or correlations may depend on
different states of the overall network activity.
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