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Abstract

The visual information that first-order cortical cells receive is contained in the visually evoked spike trains of
geniculate relay cells. To address functional issues such as tH®Emstructure of visual cortical receptive fields

with modelling studies, a geniculate cell model is needed where the spatial and temporal characteristics of the visual
response are described quantitatively. We propose a model simulating the spike trains produced by cat geniculate
nonlagged X-cells, based on a review of the electrophysiological literature. The level of description chosen is
phenomenological, fitting the dynamics and amplitude of phasic and tonic responses/sterdend antagonism,
surround excitatory responses, and the statistical properties of both spontaneous and visually evoked spike trains.
The model, which has been constrained so as to reproduce the responses to centered light spots of expanding size
and optimal light and dark annuli, predicts responses to thin and large bars flashed in various positions of the
receptive field. The switching gamma renewal process method has been introduced for modelling spontaneous and
visually evoked spike trains within the same mathematical framework. The statistical structure of the spike process
is assumed to be more regular during phasic than tonic visual responses. On the whole, this model generates more
realistic geniculate input to cortex than the currently used retinal models.

Keywords: Cat, Lateral geniculate nucleus, Phenomenological model, Gsnteound antagonism, Spike train,
Renewal process

Introduction levels of spontaneous and evoked activity (Cleland & Lee, 1985),
enhanced centgsurround antagonism (CSA; Maffei & Fioren-

The cat lateral geniculate nucleus (LGN) is characterized by a "€ni. 1972: Hammond, 1973), sharper separation between phasic

markably low level of convergence between the dn‘ferentfunctlonaland tonic discharges (Bullier & Norton, 1979), different statis-

streams originating in the retina. Anatomical (Hamos et al., 198745 in the maintained spike discharge (Bishop et al., 1964), and
Robson, 1993) and physiological studies (Singer & Creutzfeldt, 1970; ! .

. a contribution of burst firing to the response (Guido et al., 1992;
Cleland et al., 1971; Coenen & Vendrik, 1972; Kaplan & Shapley‘Mukherjee & Kaplan, 1995)

1984; C'e"f"”d & L_ee, 1985; Mas.”of‘arde' 199_2) support the view Recent models of cat visual cortex have taken advantage of the
that t'he r(_atlno-genl_culate projection is 50 specific Fhatone relay Cel&imilarities between retina and LGN by modelling the geniculate
receves its retinal input from very few (1-3) gangllon Ce”S’, at I?as'[input to the cortical network as a direct transfer of the retinal signal
within the X pathway. In various respects, geniculate receptive f'eld?Wehmeier et al., 1989; Worgotter & Koch, 1991: Somers et al

(RFs) are very similar to th_os_e of retinal ganglion F:ell_s. For exam'1995). Taking a retinal model as direct input to a cortical model is
ple, they exhibit an antagonistic centeurround organization (Hubel .

) . . justified because these cortical models have addressed the issue of
& Wiesel, 1961), have roughly the same average center size ata gIV%P

ity (Cleland | 1971 M d6. 1992 q b ientation selectivity, namely, a feature not present in the LGN
excer_1t_r|C|t.y( elan _et_ a. > :_:tstronar e, ). and can %nd considered to emerge only at the cortical level (but see Vid-
classified into very similar physiological X,Y, or W classes (Hoff-

) yasagar & Urbas, 1982). The retinal models (Linsenmeier et al.,

mann et aI.., 1972; W"?O“ etal, 1976)'. 1982; Richter & Ullman, 1982) have simply been used to provide
The_ main elaborations that oceur in the RF of LGN relay the cortical network with light-modulated synaptic excitation.

cells W't.h respect to _the RF of retinal affergnt_s are d”‘?’ among - \yhen addressing issues like the BDFF organization and
other things, to the_lnfluence exerted by '“h'b't'or.‘ (Singer & subfield antagonism of cortical simple cells, it is necessary to have
Creutzfeldt, 1970; Sillito & Kemp, 1983) and consist of lower the right degree of CSA in the geniculate input. Since CSAis less
pronounced in the retina than in the geniculate, using a retinal
Correspondence and reprint requests to: Yves Frégnac, Equipe Co nrir_1odel as direct input to first-order cortical cells would drive them

science, Institut Alfred Fessard, CNRS, Avenue de la Terrasse, 91198 Gif00 strongly in response to large stimuli. Sharpening the existing
sur-Yvette, France. retinal CSA level by modelling intrageniculate inhibitory inter-
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actions explicitly would be very expensive in the perspective of A y
large-scale neural simulations. Therefore, we preferred to keep the

simplicity and efficiency of the phenomenological retinal models

while extending their structure and updating the parameters closer

to the known properties of geniculate relay cells. Yo

Because visually evoked spike trains are intrinsically stochas-
tic, a spike train model should take intertrial variability into ac-
count in addition to the average response. While the statistics of :
spontaneougeniculate activity has been extensively studied in the ;
literature (e.g. Teich et al., 1997), no model of theually evoked
discharge has emerged yet. We have reviewed the experimental
evidence available to date on geniculate firing during visual stim- B
ulation and we conclude that a simple point-process model is suf-
ficient as a first approximation.

In this paper, we propose and discuss a phenomenological model
of individual nonlagged X geniculate RFs, built from a review of
the electrophysiological literature in the cat. This work has four
original features: (1) we focus on the restricted case of flashed bars
and radial symmetry of the spatial filters, which permits simple T T T Y =
analytical equations to be derived; (2) free parameters are intro- Time
duced that allow for separate tuning of the amplitude and dynamics C
of the phasic and tonic discharges; (3) the degree of CSA and the
amplitude of the excitatory responses evoked from RF surrounds
have been set to match their physiological level in the LGN; and
(4) geniculate spike trains have been generated by a new and o
simple method, the switching gamma renewal process, which al- R
lows to model phasic and tonic responses with different statistics. "
This model has been used as a realistic front-end in a modelling K
study of the ONOFF organization of visual cortical RFs (Gazéres
et al., 1997). Time

Fig. 1. Model overview. A: A stimulus is first specified in the visual plane
(x,y). The origin represents the center of the model geniculate RF. Here,

Frequency

Methods a rectangular bar is centered(as, yo), of width a and lengttb. The length
axis of the bar makes the anglewith the x axis. B: A number of spatio-
Overview temporal filters (see text and Fig. 2) is then used to convert the stimulus

. . Eﬁecification (A) into a continuous frequency waveform. C: Spike trains
Our purpose here is to develop a model that generates the sign e generated from the frequency waveform (B) using a switching GRP.

that first-order cells in cortex receive, namely, spike trains statisyjsyal examination shows that each raster bears strong similarity to the
tically comparable to the discharge of individual geniculate cells infrequency waveform and yet exhibits some degree of intertrial variability.
response to visual excitation. While model spike trains shouldall rasters are aligned on time of stimulus presentation.

exhibit some degree of intertrial variability, the histograms con-

structed by accumulatingrealizations of such spike trains should

converge to the usual visual poststimulus time histograms (PSTHSs),

asn — oo. The model proceeds in two steps: first, the stimulus

specification (Fig. 1A) is converted into a frequency waveform e stimulus extinction. For instance, the ON transition of a dark
(Fig. 1B) which is the theoretical counterpart of the PSTH; secondy5; is a decrease in luminance. Stimuli are presented atgiavel
spike trains are generated by a stochastic point process whose ra{gnoved at time,, so the time-variable stimulus contragt) can
Eunction)f(t) is the previously obtained frequency waveform pe gescribed by the following piecewise constant function:

Fig. 1C).

1(t) =1y, iftp=t<ty, I (t) = 0 otherwise 1)

Stimulus specification

A spot is specified by its center locatidr,, yo) and diameteD. Model structure for ON-center nonlagged X-cells

A bar is specified by its center location, widthand lengthb and ~ The model computes the contributions of eight sets of parallel
angle# between the abscissa and the major axis=(@ < ). filters (Figs. 2 and 3). Each set is composed of a spatial integration
Stimulus contrast is modelled with a single scdléquivalentto  stage, followed by a convolution in the time domain and a non-
log AL/L, whereL is the luminance). Contrast is not systemati- linearity. The contributions of the eight sets are then summed
cally varied in this article, so in most cases, a bar brighter than théogether with a constant level of background activity. The result is
background has contrabt= +1 and a bar darker than the back- passed through a half-wave rectification, yielding the final wave-
ground has contradt = —1. Conventionally, an ON transition form. Parameter values are summarized in Fig. 2 and an example
refers to the appearance of a stimulus; an OFF transition refers tis shown in Fig. 3.
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Fig. 2. Spatiotemporal filters for the ON-center cell model. Spatiotemporal filters are numbered from 1 to 8, and consist of a spatial
(A), atemporal (B), and a nonlinear (C) stage (see Methods). The result of passing the stimulus through each of the eight sets of filters
A, B, C yields a function of time. These eight contributions are summed along with a constant level of spontaneous activity, and the
result is passed through a global rectification, producing the final frequency waveform. Columns with grey boxes represent center
contributions (see narrower Gaussians, row A); columns with white boxes represent surround contributions (wider Gaussians). Columns
3—4 and 7-8 in row B build the tonic component of the response; columns 1-2 and 5-6 in row B generate the phasic component. Spatial
parameters: Al, A3, A5, A7g = 0.11 deg. A2, A4, A6, A8y = 0.33 deg. Temporal parameters: B1, B2, B5, B6= 13 ms,7, =

15 ms. B3, B4, B7, B87 = 15 ms. B1, B2A = 3370. B3, B4B = 74. B5, B6,A = 1900. B7, B8 B = 33. Nonlinearities: C1, C3,

V(x). C2, C4,—¥(x). C5, C7,—¥(—x). C6, C8,¥(—x) (see Methods).

Spatial filters row A, boxes with odd numbers (narrow Gaussians) represent the
spatial dependence of the center mechanism, while boxes with

An individual LGN cell receives excitatory input from only a few . . .
retinal ganglion cells. This excitatory input can be visually evoked® " numbers (wide Gaussians) represent the spatial dependence
: of the surround mechanism. The operation carried out at this first

fro”? anarrow retinal region ov_erlapplngthe_germ_:ulatt_a RF center. Astage is simply the spatial product between the stimulus and the
geniculate cell also receives visually driven inhibitory input, the ex-

act shape of which is not agreed upon (see Discussion) but the exte(r%taUSSIan profile (see Appendix).

of which is known to be wider than the excitatory input. Following

the methods introduced for retinal models (Rodieck, 1965; LinsenTemporal filters

meier et al., 1982; Richter & Uliman, 1982), the spatial dependence o )

of such excitatory and inhibitory contributions to a receptive field 1h€ impulse response stage is implemented to specify the temporal

has been described here by circular bidimensional Gaussians: ~ dynamics of the waveform. In Fig. 2, impulse responses in boxes
B1-B2, and B5-B6 specify the phasic component of the discharge

y and impulse responses in boxes B3-B4, and B7—B8 the tonic one.
1 Xty Impulse responses in B1-B2 and B5-B6 are high-pass filters, mod-
G(x,y) = S &P .

202 elled as a difference of exponentials:

The Gaussian width is determined by the space constaffor all horaelt) = A[ 1 exp<;t> 1 exp<;t>] t=0. @
o, the volumelG(x,y) dx dy under the surface equals 1. In Fig. 2, phasi 71 Ty 2 Nl
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g

Fig. 3. Example of a frequency waveform computation. Inset at lower left shows an example stimulus: an optimal centered spot (white
disk) flashed on a grey background. Each box contains the result of the sequence of signal transformations laid out in Fig. 2. Top box
shows the temporal specification of the stimulus contrést[egn. (1)]. Boxes in row A plot the resufi(t) of the spatial integration

stage; these are simply scaled versions(bf [egn. (A3)]. Boxes in row B plot the result of the convolution in the time domain. B1-B2

and B5-B6 contain the phasic templat.asidt) resulting from applying the high-pass impulse respdpgsgi{t); B3—B4 and B7-B8

contain the tonic templated/onic(t) resulting from applying the exponential impulse respohgg.(t). Row C holds the result of

passing each box in row B through the associated nonlinearity. The eight contributions are then added together, along with the
spontaneous activity level. Note that the OFF transition results in a “negative frequency” at that stage (thick box). Lastly, the global
rectification eliminates all possible negative discharge, yielding the final frequency waveform (see text).

Impulse responses in B3-B4 and B7-B8 are low-pass filters im- The inhibitory signal is likely to be of longer latency than the

plemented as exponentials: excitatory retinal input, since at least part of it is of intrageniculate
origin. However, we did not model this delay explicitly because
B —t intracellular recordings have shown that inhibitory postsynaptic

Pronic(t) = T exp<?>, t=0. ©) potentials (IPSPs) can sometimes be recorded slightly ahead of

excitation (Singer et al., 1972), suggesting that the delay has some
In Fig. 2, the phasic and tonic impulse responses have beeintrinsic variability and is not critically needed to get plausible
split and represented separately for the sake of clarity. In additiongeniculate responses.
separating temporal filters into phasic and tonic components makes
the fit of phasic and tonic response amplitudes simpler. The phasic
and tonic temporal waveforms for a step of contrast are obtainedlonlinear stage
by convolving the time-dependent output of the spatial stage

(€9 he nonli tage (Fig. 2, row C the following half-
(12)] with hopaeid©) and heme(t), respectively: e nonlinear stage (Fig. 2, row C) uses the following half-wave

rectification functionw(x) = x, whenx > 0, and¥(x) = 0, when

. x = 0. The nonlinearity of each given set of filters has two char-

W(t) = f p(uh(t — u) du. acteristics. First, the position of the zero branch about the origin
— determines whether the contribution comes from an ON- or OFF-
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center retinal afferent and which contrast change it allows to getvaveformf(t). There is experimental evidence that the statistical
through. Second, the positive or negative value of the nonzerproperties of spontaneous activity and tonic visual responses are
branch determines whether the corresponding afferent input actdifferent from those of phasic visual responses (see Discussion). In
through direct excitation or polysynaptic inhibition onto the post- particular, initial phasic responses are more regular than in a Pois-
synaptic geniculate cell. son process, which could be caused by an increased contribution of
For example, C1 and C3 represent the excitatory influenceébursts. Underestimating this regularity could introduce too much
elicited by positive contrast change in the RF center. C2 and C#ariability in thenumberof geniculate spikes present in the phasic
represent the inhibitory influence exerted by positive contrastdischarge, thereby disorganizing the visual input onto first-order
changes in the surround. C5 and C7 represent the inhibition evokeebrtical cells. Therefore, the switching gamma renewal process
by negative contrast changes in the center. C6 and C8 represent theethod was applied, which allows to merge portions of spike
excitation evoked by negative contrast changes in the surroundrains with different regularity levels.
The left half of Fig. 2 is called the “positive contrast” side because
nonlinearities retain only positive contrast changes. The right half
deals with negative contrast changes. As stated earlier, C1-C2 affgPhstant-rate gamma renewal processes

C5-C6 operate on the phasic response while C3—-C4 and C7-G8gnewal processes are processes in which the interevent intervals

transform the tonic response. are independent and identically distributed random variables (Cox,
Centey'surround antagonism is implemented at the nonlinearity1962). These processes have already been used to model neural

stage. Consider each of the nonlinearity pairs C1-C2, C3—C4gpjke trains in retina and LGN (Kuffler et al., 1957; Bishop et al.,

C5-C6, and C7-C8. In a given pair, the first nonlinearity is as-1964: e.g. Teich et al., 1997). A constant-rate gamma renewal

sociated with a center contribution, and the second one with grocess (GRP) is a renewal process where intervals are realizations

surround contribution having the same phasnic property.  of a random variabldl following a gammaprobability density

The nonlinearities in the pair retain the same contrast change, blﬁtjnction(pdf)’ with parameten. > 0 and regularityr > 0:

introduce a sign reversal between the center and the surround

contributions, which means that the center and the surround con- (A

tributions will act antagonistically. gr() =P{t<T<t+dt}=2A BYOR exp(—At), t=0,

4
An example of frequency waveform derivation
where I'(r) is defined asI'(r) = [t lexp(—t)dt. Such a

Fig. 3 shows how the model works in the case of a light SpOtprocess has a mean rdte= A/r. Intervals have a mean duration
flashed in an ON-center RF. The excitatory contribution from the e . .
Y Ut = r/A, a standard deviatioor = VT/A, and their coefficient

ON-center mechanism is stronger than the inhibition from the S
OFF-surround. The product of the stimulus with the spatial filtersof variation s
returns a higher value for the center Gaussians (row A, grey boxes)
than for the surround Gaussians (row A, white boxes). The impulse CVr = o7/ur = 1/\T. ®)
response stage (row B) then transforms the piecewise constant
functions of row A into phasic and tonic templates with an appro- Whenr = 1, the GRP is the classical Poisson process. When
priate time course. The nonlinearity stage (row C) operates on the < 1, gr(t) — oo ast — 0 and the probability of high-frequency
templates by eliminating either the positive or the negative parts obursts is high; the process is said toder-dispersedCV > 1).
the phasic responses. For example, C1-C4 only retain the positiw&/henr > 1, gr(t) ~ 0 ast — 0 and the probability of very closely
part of the curves above them in row B, which correspond to thespaced events is very low, which acts like a refractory period; the
positive contrast change. In addition, C2 and C4 change the sign gfrocess is said to bender-dispersedCV < 1).
the curve, so that, in the following summation therroundcon- Whenr is an integer]'(r) is the factorial(r — 1)! and eqn. (4)
tribution of filter 2 will antagonize theentercontribution of fil- is thepdf of the sum ofr independent random variables following
ter 1; this implements centé&surround antagonism for the phasic an exponentigbdfwith parametei. Put another way, in a Poisson
response. Likewise, C4 antagonizes C3 for the tonic response torocess of raté= A in which only everyrth event is recorded, the
ON transitions of light stimuli. intervals are distributed according to eqgn. (4).

Box C6 (Fig. 3) shows that the OFF transition of the centered
spot evokes a weak excitation from the OFF-surround, strongly
antagonized by the ON-center inhibitory influence (box C5), theNonhomogeneous processes

net result being a suppression. Boxes C7-C8 illustrate that in th@ process is said to beonhomogeneoushen its rate is a function
model the extinction of the visual stimulus produces no tonic com-of timef (t). This represents the theoretical counterpart of a variable-

ponent; in this case, the OFF transition just evokes a suppressiwgequency spike train. Let a new time scalde defined by
transient. If the stimulus instead was a light annulus flashed in the

OFF-surround, then the value of the spatial integration would be )
higher for the surround than for the center, and the frequency (1) :f f(u) du. (6)
waveform would be negative, consistent with the suppression clas- 0
sically observed in this case (Fig. 8B).

Intuitively, when the ratéd () is high, closely spaced evertis
andt, will be mapped into event timeqt;) andr (t,) separated by
a long interval, meaning a lower instantaneous frequency. Like-
The second step in simulating visually evoked geniculate spikavise, intervals(ty, t,) wheref(t) is low will be transformed into
trains is to generate a spike train whose rate follows the frequencghorter intervals in the new time scale. Hence with eqgn. (6), the

Gamma renewal processes



1162 N. Gazeres, L.J. Borg-Graham, and Y. Frégnac

time axis is locally dilated or contracted to transform the time- A
varying process into a constant rate process.

The usual method to generate a set of event tifbgs. ., ty),
following the variable ratd (t) (as in Fig. 1C), is to generate a 10
realization[ 7 (t1),...,7(ty)] of a unit rate process and map it back
to the original time scalé by inverting eqn. (6).

spikes/sec/trial

Asymptotic behavior of the mean rate

For a general renewal process, the random varigpiedefined as

the number of events between 0 andrhe rate of the renewal

process ovef0,t) can be estimated by the ratig/t. Ast — oo,

the mean and variance of have the following limit behavior:

E(Ny) ~ t/pur and V(N;) ~ oft/ud (Cox, 1962, 3.3). When the B
renewal process is a GRF;/pr = 1/4T from egn. (5). In addition,

ast — oo, the estimated rate and its variance obey the following
equation:

200

S

spikes/sec/trial

10 A

VIN/t) 1
ENJO 1t )
i . 0 -
First interval of a stationary GRP 0 200
Consider a GRP that startstgt= 0. If to = 0, then by definition,
the time until the first event aftér= 0 follows the original gamma
pdf [egn. (4)]; this is called theimpleGRP. Now, ifty < 0, there C spikes/sec/trial

may be one or more events betwegand 0, so the first event after

t = 0 may no longer be the first event in the GRP. Consequently,
the interval between 0 and the first event after= 0 will not be
distributed according to egn. (4) but to a distribution that is more
complex in generalexceptin the very fortunate case whetg=

—oo; this is called thestationaryGRP. A fundamental theorem of
renewal theory (Cox, 1962, 5.2) indeed states that, in this case, the
pdf gr(t) of the interval between 0 and the first event after O 0
is a simple modification of the original gamnpalf [eqgn. (4)]:

10

200

0

l t
or(t) = = [1— J; gr(u) dU], t=0. (®) D spikes/sec/trial

Fig. 4 illustrates the difference between a simple (Fig. 4B) and 10
a stationary (Fig. 4D) GRP. Both processes are simulatdg
betweert = 0 andt = 200 ms, but the simple GRP generally shows
a transient phase whereas the stationary GRP has reached steady-
state right from the beginning. The stationary GRP can be seen as
a simple GRP started & — —oo and observed only after time
t = 0, the major computational advantage being that it is not 0
necessary to generate the full process since time immemorial.
The Poisson process is a special GRP= 1) that has the time (msec)
fundamental property of beinmemorylessfor any timetg, the
interval betweerty and the first event aftep does not depend on  Fig. 4. Interval distributions and PSTH of simple and stationary GRPs. In
the history of the process befotg in a Poisson procesgy(t) = the following, all processes and intervals have afater/r = 10 spikegs,
gr(t) = A exp(—At). Conversely, any GRP with# 1 has memory.  aregularity parameter= 5, and are simulated between tifne 0 andt =
Whenr is an integer, eqn. (8) can be simplified to the following 200 ms (= 5000). A: Histogram of the first interval in a simple GRP. The
form: histogram is an estimation of the gammdf [egn. (4)]. B: PSTH of a
simple GRP. B differs from A in that subsequent events in the process are
- o1 represented. Note that tt@mple GRP reaches a steady rate only after
Gr(t) = é f 2 (Au) exp(—Au) du 80-90 ms. C: Histogram of the first interval in a stationary GRP. The
rJ (r—1)! histogram is an estimation of thelf in egn. (8), modified from eqgn. (4).
D: PSTH of a stationary GRP. D differs from C in that all events between
t=0andt =200 ms in the process are represented. D is calidtonary
~—5 exp(—At). 9) GRP, because its rate reaches steady-state right aftert tim@ ms. Bin
k=1 (k=1 width = 1 ms.

S

200
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This has the following interpretation: the first event atter O
in the stationary GRP of parametgrorderr and ratef = \/r can
be the first, the second, ... or thr¢h event in the underlying
Poisson process of rate= A. In a simple GRP started gt— —oo,
the first event aftet = 0 can be any of thegeevents with the same
probability I/r.

Switching gamma renewal process

Our focus is to generate geniculate spike trains in response to a
flashed stimulus, which typically involve portions of spontaneous
activity, phasic discharge, and tonic discharge (e.g. Fig. 6B). The
spike trains from those three episodes follow statistics of differing
orders (see Discussion). Thus, we have introduced a modification
of the classical GRP, named teeitching GRRPin order to provide

an easy solution to the differential modelling of those three phases
within the same mathematical framework.

We define aswitching GRPas a concatenation atationary
GRPs, all of which have the same mean rate. TtheGRP is
defined only over the bounded interVd}, t; ;1) and has its own
regularity parameter;. Importantly, at each transition tintg the
first interval in theith GRP is generated using eqn. (8), not eqgn.
(4). Subsequent intervals are generated according to eqn. (4) until
the event of théth GRP falls out of intervdlt;, t;, 1) (this event is
discarded). Thenonhomogeneouswitching GRP can be con-
structed by mapping realizations of a unit rate switching GRP of
orderr back to the original time scale with eqgn. (6).

An example of switching GRP is shown in Fig. 5A. Regularity
in the spike train increases agets higher. In this examplegg-
ularity changes but theate keeps constant. In the general case, it
is possible to use both a time-dependent rate and time-dependent
regularity. Fig. 5B shows a concatenatiorsohpleGRPs in which
the first interval after the transition in regularity (arrows) is gen-
erated with the original gammadf[eqgn. (4)]; note that this process
is not a switching GRP.

Fig. 5. Examples of switching and non-switching GRPs. A: A switching
GRP withf = 50 spikegs is simulated betweeh= 0 andt = 1000 ms.
Transitions in regularity (arrows) occur every 200 ms. Raster plot shows
the first 25 single realizations of the switching GRP, aligned on time
t = 0 ms. The histogram compiles 500 realizations of the switching GRP,
including the 25 displayed. At each transition time, the first interval is
generated with thenodifiedgammapdf [see egn. (8) and Fig. 4CJ; sub-
sequent intervals are generated with the classical gapafifjagn. (4)]. The
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In the geniculate model, the set of regularity transition times for
the switching GRP is a function of the frequency waveform de-
fined as follows:r = 1 on intervals where the instantaneous re-
sponse frequency is lower than 65 spikesandr = 5 where it is

A v rel oy =S { r=50 | r=10 | r=1

spikes/sec/trial ¢ ¢ ‘ ¢

75
50

25

0
0 1000
time (msec)

higher the regularity, the more intervals tend to be concentrated around spikes/sec/trial ¢

their mean duration. When= 1, the switching GRP is statistically equiv-
alent to a Poisson process. Using the modified ganpaiamakes the
transition between different regularity periods very smooth. The histogram
estimates very closely; there is no sign in the histogram which reveals the
underlying transitions in regularity. Bin widts 2 ms. B: A concatenation

of GRPs is simulated with the same conventions and characteristics as in
A, excepthat the first interval after a regularity transition is generated with
theoriginal gammapdf[see eqn. (4) and Fig. 4A]. This process is thus not
a switching GRP. In this case, transitions in regularity are obvious in the
histogram (first three arrows). Dips at the first and third arrows correspond
to the slow rise of Simple GRPs (Fig. 4B). The oscillatory pattern (second
arrow) is due to the high regularity (= 50) of spike trains and their
reproducibility from trial to trial in this portion. At the beginning of the
Poisson portion (arrow with asterisk), the switching and non-switching
case are statistically identical.

125

100

75

50

25

0 1000
time (msec)
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higher (see Discussion). Different frequency waveforms have difthe animal (Sakakura, 1968; Livingstone & Hubel, 1981) and on

ferent sets of regularity transition times, in general. the anesthetics (Levick & Williams, 1964). We have chosen to
model a physiological state close to the usual experimental prep-
Model structure for OFF-center nonlagged X-cells aration: an anesthetized animal in the mesopic ambient luminance

We have assumed symmetry between ON-center and OFFange (0.1 to 25 ¢in?, Hammond & James, 1971).
center geniculate RFs, but the alterations of Fig. 2 to transform the The estimates of spontaneous activity in geniculate X-cells pro-
ON-center model into an OFF-center one are straightforward: nonvided by several authors have been summarized in Table 1. As
linearities are flipped about the axis. Hence, functions become assessed by these results, a spontaneous discharge frequency of 10
¥(—x) in C1,C3;—¥(—x) in C2,C4;—¥(x) in C5,C7; and¥(x) spikeg's seems in the physiological range. This is the value we
in C6,C8. This transformation means that spatio-temporal filterschose for both ON- and OFF-center X-cells in the model.
will play the same functional role, but for the opposite contrast.
Other parameters are unchanged. L )
Receptive-field center size
Simulation software The average RF center size increases fronatka centralisto the
The simulations were carried out using the Surf-Hippo 2.7visual-field periphery (Hubel & Wiesel, 1961). In our model, the
neuron simulator package (Borg-Graham, 1997), on a SPARCeenter size is defined as the diameter of the centered spot eliciting
station 5 running Solaris 2.4. Code is available by ftp from maximum response. Pooling all eccentricities and cell types, the
cogni.iaf.cnrs-gif.fr. We used the random number generator proRF center diameter varies between 0.3 and 2.0 deg in the light-
vided with the CMU Common Lisp environment, version 18a. adapted state (Virsu et al., 1977). The apparent RF center size has
a tendency to widen in the dark-adapted state (Virsu et al., 1977),
up to threefold (Kaplan et al., 1979). A comparison of estimates of
the mean RF center size provided by various authors is given in
In this section, we describe how we extracted the parameters of thEable 1. We chose 0.5 deg as the RF center diameter of our generic
model from the electrophysiological literature. Whenever possible X-cell, which corresponds to the average RF center diameter for
we tried to compare the experimentally derived estimates provideX-cells with a single retinal afferent at an approximate eccentricity
by several authors and different protocols. of 6.0 deg, in the mesopic background luminance domain. To-
gether with the constraint on CSA (see below), this choice could be
. satisfied by setting the space constant of the center Gaussian to
Spontaneous activity oin = 0.11 deg and that of the surround gaussiamge= 0.33 deg.

Spontaneous activity is a random discharge that occurs in LGN
cells when they are subjected to no visual stimulation other than
uniform background luminance. An overestimation of this quantity
may result in unstable “resting” states in the cortical network; anWhen a small light spot is flashed in the center of an ON-center
underestimation may decrease the excitability and integrative progeell, the cell first responds with a short high-frequency phasic
erties of whichever cells receive the geniculate background syndischarge, followed by a longer tonic discharge. The phasic dis-
aptic noise. Spontaneous activity can also be envisioned as a meaharge in response to an optimal spot lasts about 50 ms on the
level that the visual signal can modulate up and down (Kufflerspatio-temporal maps of Bullier and Norton (1979, Fig. 2C). The
et al., 1957). primary excitation described by Singer and Creutzfeldt (1970) was
A reference level for spontaneous activity is very difficult to reported to last about 30 ms, but this might be an underestimation
define since, in the general case, it depends on the visual adaptaf the transient peak due to a pronounced secondary inhibition
tion level of the retina (Kaplan et al., 1979), on the arousal state oftransient suppression between the phasic and the tonic responses,

Results

Phasic and tonic responses to an optimal spot

Table 1. Center size and spontaneous activity derived from the experimental litetature

Spontaneous activity (spikés

References Eccentricity (deg) Center size (deg) ON-center OFF-center
Bullier & Norton (1979) <10.0 0.51 7.8t 4.6 8.0+ 4.2
Wilson et al. (1976) All 0.5 (0.3-1.0) 2.5-125 0.0-7.5
Hoffmann et al. (1972) 3.0-10.0 0.67 —
Sanderson (1971) 4.0-8.0 0.8-0.9 —
Saul & Humphrey (1990) Around 10.0 0.7 (0.2-2.0) —
Teich et al. (1997) — — 6.6
Levine & Troy (1986) — — 15

XS XM XS XM
Mastronarde (1992) Around 6.0 0.51 0.87 Rard 11+ 9

aThis table summarizes the average center size (in deg) and the mean spontaneous activity (is) dpikscells at different
eccentricities. Spontaneous activity in Bullier and Norton (1979) and Mastronarde (1992) aredzmennXS: single-afferent X-type
relay-cell; and XM: multiple-afferent X-type relay-cell.
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see Discussion). In the impulse response given by a difference afhow an X-type RF whose center diameter is 0.4 deg, and whose

exponentials [eqgn. (2)], we chose valuesrgf= 13 ms andr, = response is totally suppressed for a stimulus 2.4 deg in diameter. In
15 ms, yielding a width at half-height of 38 ms in the phasic Fig. 4 of Hammond (1973), the RF center is about 2.0 deg wide,
waveform. and the response falls to 10% of optimal for a spot diameter of

Humphrey and Weller (1988, Fig. 6) have provided a distribu-8.0 deg. Likewise, Hammond (1972, Fig. 7A) shows a cell with a
tion of the peak frequency during the phasic discharge of nonRF center 0.75 deg in diameter and a response 10% of maximal at
lagged X-cells in response to spots 60% larger than the center. Ths spot diameter of 3.0 deg. Another example from Sillito and
might have underestimated the maximal response because of/centé¢emp (1983, Fig. 8) is an ON-center X-cell with a center diameter
surround antagonism. The rates ranged between 50 and 400/spikesof 0.5 deg with a response 5% of maximal at a spot diameter of
with a mean of 161 spik¢s (contrastAL/L = 0.6). Saul and 2.0 deg.

Humphrey (1990) reported a slightly lower estimate (131 sp&es These data may be reasonably summarized by considering that
but with lower contrast 4L/L = 0.4). In addition, there is indi- the response to a centered spot with a diameter four times as large
cation that the peak phasic discharge may actually be higher foas the center is less than 10% of the optimal spot response (crite-
multiple-input (275+ 89 spikegs) than for single-input X-cells rion 1). This conclusion has been drawn from a collection of iso-
(157 + 83 spikegs), in response to an optimal spot (Mastronarde,lated examples because we could not find an estimation (based on
1992). Taking 160 spik¢s as a first approximation to the peak a large sample of cells) of what the spot size should be to get a
phasic discharge frequency seems a reasonable value for nofixed reduction (e.g. 90%) of the optimal spot response, except in
lagged X-cells with a single retinal input. Hammond (1973): for cells with an RF diameter of 0.5 deg, he

Is there a relationship between phasic and tonic discharge levebsstimated the discharge would fall to 60% of maximum for spot
in a given cell? Bullier and Norton (1979) have defined the phfasic diameters of 0.8—0.9 deg (criterion 2).
tonic index as the ratio of the tonic discharge to the peak phasic We found that both criteria could be met by considering a
frequency (spontaneous activity subtracted). This index was estsimple difference of iso-volume bidimensional Gaussians: the peak
mated to 34+ 18%, which gives a tonic discharge of 61 spikes phasic response to a 0.9-deg spot is 99 spi&kesamely 62% of
assuming a spontaneous discharge level of 10 sfgkasd a peak the peak phasic discharge in response to an optimal centered spot
phasic discharge of 160 spikiss Similarly, Saul and Humphrey (0.5 deg, 160 spikes). Moreover, with this choice, the peak pha-
(1990) computed the ratio of mean to maximal discharge, withousic response (including spontaneous activity) to a 2.0-deg spot
subtracting spontaneous activity. This ratio was 8816% for  diameter is 8% of maximum. Following Hammond (1972), we
nonlagged X-cells and gives a tonic discharge of 60.8 spgkes assume that the same degree of CSA exists for the phasic and tonic
consistent with the above study. responses. The iso-volume assumption translates into using the

We therefore decided that in our model the response of a nonsame impulse responses in each pair of antagonistic genter
lagged X-cell to an optimal centered spot, at the fixed level ofsurround filters (Fig. 2, row B).
contrast that we have chosen, would consist of a phasic discharge Fig. 6 shows the behavior of the model in an expanding spot
of 160 spikegs, followed by a tonic discharge of 60 spikes protocol. The small spot in Fig. 6A covers only part of the RF
(Fig. 6B). This allowed to constrain the impulse response amplicenter, yielding a suboptimal response. Fig. 6B is the optimal
tudesA andB [eqgn. (2,3)] on the “positive contrast” half of Fig. 2 spot response described earlier. The phasic discharges in
(Ain B1-B2 andB in B3—B4). These parameters are closer to theFigs. 6A, 6B, and 6C are generated using the high-regularity
behavior of single-input X-cells than multiple-input X-cells, but GRP ¢ = 5), because the frequency is above 65 spikesll
this choice seems justified in that single-input X-cells dominate inother portions of the responses are generated by Poisson pro-
the neighborhood of tharea centralis(Mastronarde, 1992). cessesr( = 1, see Discussion). Figs. 6C and 6D show how
responses get weaker when the spot covers part of the surround.

Cleland and Lee (1985, Fig. 4) show the differential CSA be-
tween a single geniculate cell (RF center diameter, 0.65 deg) and
When a small light spot is flashed over the RF center, the responsiés main retinal ganglion cell afferent: in a nonlagged geniculate
is initially weak. As the spot diameter increases, the respons&-cell, the response to a 2.5-deg spot is almost brought down to
grows because of spatial summation in the center. When the spdéite spontaneous level, whereas the same response has barely de-
is enlarged so as to encroach on the surround, the cell responds leggased from the optimal spot response in the main retinal afferent.
strongly; this is referred to as centsurround antagonism (Hubel Fig. 7 summarizes the comparative performance of the retinal
& Wiesel, 1961; Hammond, 1973; Bullier & Norton, 1979). model used in Somers et al. (1995) together with our work and the

The degree of CSAis all the more pronounced as (1) the cell idypical data from Sillito and Kemp (1983, Fig. 8).
further away from tharea centralis(Hubel & Wiesel, 1961), and
(2) the RF center is small (Hammond, 1973; Bullier & Norton, Excitatory responses from the surround
1979). As stated earlier, there is considerable experimental evi-
dence that RF surrounds are more potent in antagonizing the centkris known that geniculate RF surrounds are not only capable of
excitatory responses in geniculate cells than in retinal gangliorantagonizing the center’s excitatory responses but also of produc-
cells (Maffei & Fiorentini, 1972; Hammond, 1973; Bullier & Norton, ing themselves a discharge in response to annuli or spots of the
1979; Sillito & Kemp, 1983; Cleland & Lee, 1985). Sillito and proper contrast (Hubel & Wiesel, 1961, Fig. 1D; Singer &
Kemp (1983) have shown that this is at least partially due toCreutzfeldt, 1970, Fig. 4; Sillito & Kemp, 1983, Figs. 2 and 3;
intrageniculate GABAergic inhibition, since iontophoresing the Cleland & Lee, 1985).

GABA, receptor antagonist bicuculline reduced the degree of ge- Spatial summation occurs in the surround too. When the inner
niculate CSA to values observed at the retinal level. diameter of a light-centered annulus that initially covers only the

Many examples in the literature give quantitative indications asfar OFF-surround decreases, the excitatory response at light OFF
to the level of CSAin the LGN. Bullier and Norton (1979, Fig. 8A) increases (Cleland & Lee, 1985, Fig. 7B). When the inner diameter

Center/surround antagonism
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Fig. 6. Simulated expanding spot protocol. This figure shows the responses of a model geniculate nonlagged ON-center X-cell to
centered spots of expanding diameter and positive contrast. RF center diameter is 0.5 deg (dashed circle). Light spots are represented
as white disks. On this figure and the following, background luminance is represented as a grey rectangle. This rectangle is represented
as finite but should be seen as spanning the whole visual field. Spot diameter is 0.25 deg in A, 0.5 deg in B (optimal stimulus), 1.0 deg

in C, and 1.5 deg in D. In all plots, the stimulus is presentetd=a200 ms and disappearstat 600 ms (black bar). Histograms are

compiled from the 25 spike trains shown above. The continuous line represents the ideal frequency waveform from which the spike
trains are generated. A-D: Bin width 5 ms, contrast = 1.0. Peak phasic discharge level (spi®sA, 110; B, 161; C, 82; D, 27.

Tonic discharge level (spikgs): A, 43; B, 60; C, 34; D, 16.
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% max amplitude of the annulus becomes smaller than the RF center diameter, the
100 - response decreases, meaning that the center also exerts antagonism
; : : : on the surround response (Cleland & Lee, 1985, Fig. 6B).

The stimulus used to measure surround responses is usually an
annulus that optimally covers the surround. The outer diameter of
this optimalannulus is very large and its inner diameter is the RF
center diameter. With such a protocol, Cleland and Lee (1985,

30 4 Figs. 7A, and 7B) showed that peak phasic surround responses can
be very similar in amplitude to optimal centered spot responses.
The excitatory strength of surrounds is extremely variable from
cell to cell; indeed, Horton and Sherk (1984, Fig. 6) found that the

0 ratio of the optimal annulus response to the optimal spot response

' ' ' ' could vary between 0% and 100%, occasionally rising above 100%,
0.08 0.2 0.5 1.25 3.2 with an average of 45%.
Spot diameter (degrees, log scale) ~ We assume in the model that the presentation of a dark annulus
in the OFF-surround of an ON-center cell also produces a phasic
Fig. 7. Comparative centgsurround antagonism levels. Discharge levels and a tonic discharge, the amplitude of which can be scaled from
are measured in response to centered spots of varying diameters. Respoitke optimal spot response by applying the proportionality factor
amplitudes normalized to the maximum response are plotted versus sp¢45%) found by Horton and Sherk (1984). The response to a dark
diameter (|Og coordilnate alo_ng. Solid lineis the curye plotted in Sillito 0ptima| annulus thus consists of a peak phasic discharge of about
and Kemp (1983, Fig. 8); this curve was chosen since the cell has propyg spikegs, and a tonic discharge of about 33 spjleésponta-
erties very close to the specification of our model: it is a (probably non-peous activity included)
lagged) geniculate ON-center X-cell with an RF center size of 0.5 deg. This data allows to calibrate the impulse response amplitdes

Short dashed linshows the centésurround antagonism behavior of the . . . . .
model described in this paper, very close to the experimental data ofSiIIito‘ﬁ,nd B in the right half of Fig. 2 & in B5-B6 andB in B7-B8).

and Kemp (1983)Long dashed linshows the centgsurround antagonism 19 8A shows the response of an ON-center RF model toa dark
of the retinal model by Somers et al. (1995); the level is adequate at spdPtimal annulus flashed above the OFF-surround. Fig. 8B illus-
diameters up to 1.0 deg, but the surround is much less efficient at antagrates the response to a light annulus; an initial suppression is
onizing the center excitatory response at larger diameters. followed by a phasic discharge at the OFF transition.

75

0
time (msec) time (msec)

Fig. 8. Model responses of an ON-center cell to light and dark optimal annuli. An optimal annulus has an inner diameter equal to the
RF center diameter (0.5 deg), and an infinite outer diameter (represented as finite, for obvious reasons). This is the stimulus that can
evoke the maximum response from the surround. A: A dark optimal annulus (black annulus) is flashed above the OFF-surround.
Presentation evokes an excitatory response. Peak phasic response, 78 spikés response, 32.5 spikass Contrastt = —1.0,

n = 25. B: Alight optimal annulus (white annulus) is flashed above the OFF-surround. Annulus presentation suppresses spontaneous
discharge; withdrawal evokes a phasic response only. Peak phasic response, 48.9pikesast = 1.0,n = 25. Other conventions

are as in Fig. 6.
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Generalizing the model to bar responses

N. Gazéres, L.J. Borg-Graham, and Y. Frégnac

design the model or to constrain its parameters. They represent a
test of the model on a new kind of visual stimulus. The general-

Modelling geniculate responses to flashed bars is important sinciation to a new kind of stimulus geometry is critically dependent
studies of cortical visual responses often use such stimuli. Then the assumption of linearity in the spatial summation properties
visual responses to flashed bars shown in Figs. 9 and 10 diffeof geniculate RFs (see Discussion).

from the model responses shown so far (optimal spot responses To our knowledge, the only examples of geniculate responses
and optimal annulus responses) in that they have not been used to bars flashed in the surround are provided by the spatio-temporal

spikes/sec/trial
120

time (msec)

120 A

time (msec)

spikes/sec/trial
120 1

time (msec)

spikes/sec/trial
120 A

time (msec)

Fig. 9. Response to light bars flashed in various RF positions in the model geniculate nonlagged ON-center X-cell. Bar dimensions:
A-C, 0.5X 2.0 deg. D, Ix 2 deg. Peak phasic response (in spilsgsA, 106; B, 12.5; C, 21 (at light OFF); D, 40. Tonic response
(in spikeg's): A, 42; B, 10.8; C, no tonic response; D, 20 (see text). Contrasl.0, n = 25. Other conventions are as in Fig. 6.
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0 ] 1000
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Fig. 10. Simulated spatio-temporal map in the model geniculate nonlagged ON-center X-cell. A thin light bar was flashed in 51
overlapping positions across the receptive field. Each response is displayed as a raster. The stimulus positions span 1.5 deg, that is three
times the RF center diameter. On the left, relative locations of the stimulus and the receptive-field center are shown for three stimulus
positions. The bar and the receptive-field center are drawn at the same scale. The shaded rectangle represents the background
luminance. Light bars are flashed ONtat 100 ms and OFF dt= 600 ms. Receptive-field center diameter, 0.5 deg. Bar dimensions,

0.4 X 0.15 deg. Step between two positions, 0.03 deg. Note that cohtra8t here. Other conventions are as in Fig. 6.

maps of Bullier and Norton (1979) and the results of Tanaka (1983Discussion
F|g§. /,and 8). The spa_ltl'o-temp'oral maps use thin bars in order t‘Phe main result brought by this model is an operational method for
estimate the RF sensitivity profile precisely, at the cost that they . . . L
T e generating geniculate spike trains in response to flashed spots and
may not be able to evoke significant excitation from the surround_bars The receptive-field part of the model has been constrained
toni(t:gtlel oLhSeer dh\?vﬂi’ntrs]?uzairr? uisﬂigﬂgska (1983) are of the SIZaei‘:cording to the visual properties of cat geniculate nonlagged
ypiea’y ying . : . X-cells. The spike train generation mechanism has been designed
Both protocols were simulated in the model and yield results

- ) _— : to fit the statistical properti f ntan nd visually evok
similar to the experimental findings. Fig. 9A shows the response toO e statistical properties of spontaneous and visually evoked

a light bar flashed in the RF center, and this strong response igeniculate. firing. The resulting model can be used to. genergte a
. more realistic input to a cortical network than classical retinal
comparable to that shown by Tanaka (1983, Figs. 7D and 8D)r‘node|s
When flashed in the OFF-surround (Fig. 9C), the light bar com- '
pletely suppresses the geniculate response with a little discharge at
light-OFF. This is similar to the result of Tanaka (1983, Fig. 7F). I . .
: . . . Essential differences with retinal models
Fig. 10 shows a simulated spatio-temporal map. The bar dimen-
sions and shift were adjusted as in Bullier and Norton (1979), withGeniculate X-cells differ from retinal ganglion X-cells in their
a bar length 0.8 times the RF center diameter and a width 0.3 timelevel of spontaneous activity, relative phasic and tonic response
the RF center diameter. Since the bars are much smaller than mmplitudes, spike train statistics and the existence of burst firing,
Fig. 9, contrast was increased up to 3.0 to produce a strongerand the level of centgsurround antagonism. So far, cortical mod-
response. The overall spatial pattern of excitatory responses arelling studies (Wehmeier et al., 1989; Worgotter & Koch, 1991;
suppressions in the simulations look very similar in many respect§Somers et al., 1995; Maex & Orban, 1996) have resorted to retinal
to the experimental X-cell maps (Bullier & Norton, 1979, Figs. 2, ganglion cell models to provide visual excitation to the cortical
3, and 5A-5C). Phasic responses have the same lateral extent m&twork since no operational geniculate X-cell model was available.
tonic responses, which was claimed to be a distinguishing feature In severals respects, our geniculate model is different from the
of X-cells. usual retinal models and modifying the latter in minor ways could
Tanaka (1983, Figs. 7D and 7F) shows a cell whose response twot overcome their fundamental limitations. First, within the X
a bar flashed in the surround is only 10% of the response to th@athway, the retino-geniculate projection is usually one-to-one,
same bar flashed in the RF center. The ratio is 20% in our modelvith a transfer ratio in anesthetized preparations rising from low
(106 versus21 spikegs, Figs. 9A and 9C). Note that the cell values during spontaneous activity up to 80% in response to drift-
shown by Tanaka (1983, Fig. 7F) has a phasic (but no tonic)ng gratings of optimal temporal frequency (Hamamoto et al.,
suppression of spontaneous activity in response to a light bar flasheik®94) and up to 100% during phasic responses to flashed spots
in the OFF-surround, whereas tonic suppression is complete in oyiHartveit & Heggelund, 1995). Under these visual stimulation con-
model (Fig. 9C; Fig. 10, position 1). The results by Bullier and ditions, excitatory postsynaptic potentials (EPSPs) are so powerful
Norton (1979) are intermediate. It is not known whether Tanaka'shat almost all retinal spikes elicit a geniculate spike. In contrast,
situation is typical and, in any case, the experimental literaturegeniculo-cortical projections involve some degree of convergence
really does not give enough quantitative data yet to suggest diffTanaka, 1983) andtrong phasic dischargeare needed from a
ferential modelling of the phasic and tonic surround suppressionnumber of presynaptic geniculate cells to drive the cortical target
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cell. Therefore, modelling the phasic discharge with the right fre-(Cleland & Lee, 1985; Fjeld et al., 1997) and the transfer ratio was
quency and the right regularity is critical in having the necessanjower than one, suggesting that visually driven geniculate inhibi-
number of spikes to evoke a response from the cortical networktion is already effective across the RF center.

However, our preliminary simulations of the cortical network show  Therefore, we modelled the surround with a circular Gaussian.
that if the amplitude of the tonic geniculate response is not signif-Doing so introduces just one parameter, the standard deviation
icantly attenuated relative to the phasic input, as is the case fawhich is easy to calibrate with center-surround antagonism, whereas
retinal models, then the network will receive too much tonic ex-a doughnut profile would need two parameters. In addition, the
citation and be driven into an unrealistic state of activity. For thisnumerical integration with a Gaussian is made very efficient by
reason, it is fundamental to dissociate the amplitudes of phasic anegn. (Al).

tonic discharges, which we did by splitting the filters into a phasic
set and a tonic set.

Second, in the model that we propose, cefserround antag-
onism is quantitatively close to its experimentally measured levelLinearity in the dependence of the response on the stimulus shape
In particular, geniculate surrounds are strong enough to antagonize a major assumption in our model, as it was in earlier retinal
center responses to large centered spots, which is of major impornodels. If the cell is known to behave linearly, its response to any
tance in a model of the ONDFF organization of simple receptive stimulus geometry can be predicted from the responses to more
fields. While it is true that retinal models could be modified in simple patterns. This assumption of linearity has been shown to be
minor ways to account for the level of CSA found in the LGN, they valid for X-cells with the method of the bipartite field (Kratz et al.,
cannot account for the amplitude of the surround excitatory re-1978; Bullier & Norton, 1979) or the method of contrast reversal
sponses and their intercell variability. Indeed, in retinal models, thegratings (So & Shapley, 1979).
response to a light spot flashed in the center and the response to a
dark annulus flashed in the surround cannot be constrained SePB stnhasic su .
rately because these models are made of only two spatio-temporalO P ppression
filters. The exact level of surround excitatory responses has alwaySome authors describe a “secondary inhibition,” or “postphasic
hindered investigators from interpreting the origin of distinct sub-suppression” between the phasic and tonic discharge (Singer &
regions within the same cortical simple RFs and from distinguish-Creutzfeldt, 1970; Coenen & Vendrik, 1972, Fig. 2; Hammond,
ing the relative influence of the thalamo-cortical and intracortical1973; Virsu et al., 1977). Yet, it is noted elsewhere that this sup-
mechanisms. Also, in a given geniculate cell, the optimal annulupression disappears during dark adaptation (Virsu et al., 1977),
response can be any percentage of the optimal spot response. Shotlidt for nonlagged X-cells it is only present at high stimulus con-
this intercell variability be ever included in the thalamic stage of atrasts (Hartveit & Heggelund, 1992), and that above all this sup-
cortical model, it could not be if the model does not allow somepression may be dependent on the anesthetic employed (Cleland &
fine differential tuning of the center and surround excitatory re-Lee, 1985). Therefore, this characteristic was not incorporated in
sponses. Accordingly, we have split the filters for center and surthe model.
round responses.

Lastly, more sophisticated models of spontaneous geniculat
firing have been proposed (Levine & Troy, 1986; Teich et al.,
1997) but the issue of visual responses was left apart. In theséhe parameters we found are valid at relatively low contrasts. At
studies, spontaneous activity was modelled over long periods dfigher contrasts, nonlinear behaviors appear and responses saturate
time (=80 min), whereas we focus on a much shorter time scal€Cleland & Lee, 1985; Hartveit & Heggelund, 1992). Flashing
(=1 s), neglecting the hidden long-term temporal structure. Thehigher contrast stimuli presumably evokes a more significant con-
switching GRP method (see below) allows to model spontaneousibution from intra-geniculate inhibition; therefore, modelling net-
and visually evoked spike trains within the same mathematicalvork effects may be necessary to account for the contrast dependence
framework. of the response in the general case. Geniculate network effects
were neglected here because we wanted to keep the model at the
same phenomenological level as earlier ganglion cell models (Ro-
dieck, 1965; Linsenmeier et al., 1982; Richter & Ullman, 1982) in
At the retinal level, circular Gaussians have been shown to providgarticular for application to large-scale neural simulations (e.g.
excellent fits to the spatial dependence of both center and surrourSomers et al., 1995; Maex & Orban, 1996).
influences (Rodieck, 1965; Enroth-Cugell & Robson, 1966). In the
LGN, there is still controversy about the exact shape of the inhib- . .
. . i o . ._ Correlations between geniculate cells
itory input, with some authors claiming that it also has a Gaussian
profile, and others arguing that it looks more like a doughnut.It has recently been shown that neighboring geniculate relay cells
Singer and Creutzfeldt (1970) have shown with quasi-intracellulaexhibit correlated firing on a fast time scale in response to visual
recordings that inhibitory visual input to the geniculate cell in- stimulation (Alonso et al., 1996). Indeed, the transfer ratio between
creased when a small spot was flashed further away from the RFetinal input and geniculate spike output is close to one and neigh-
center. However, Coenen and Vendrik (1972) have observed thddoring retinal ganglion cells themselves have correlated firing (Mas-
hyperpolarizations were present even in responses elicited by stintronarde, 1983). A retino-geniculate divergence factor higher than
ulation of the center only. Besides, simultaneous recordings obne might also explain correlations between geniculate cells fed by
both retinal inputs (S-potentials) and cell output (spikes) havehe same axon. Coincidence in the discharge of presynaptic genic-
shown that for small spots covering only part of the center, geniculate cells might enhance their ability to bring the cortical target
ulate response was already weaker than the retinal input signaklls to threshold.

Linearity in the spatial domain

Contrast dependence

Spatial dependence of visual inhibitory input
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In our model, it is possible to incorporate correlations on a fastet al. (1997) found that a doubly stochastic GRP with fractal fluc-
time scale between the spike trains of cells whose RFs are of thations in the rate could account for both the short- and long-term
same center type and overlap, in a straightforward way. When RFsehavior (about 1 hr) of geniculate spontaneous firing.
overlap, the frequency waveform&) computed for both cells are Since the goal of our model was to simulate spontaneous and
equal for any stimulus and hence, the mappings described in egrisually evoked geniculate spike trains on the order of 1 s, we
(6) are identical. Generating two correlated switching GRPs thatonsidered that keeping the GRP as the core mechanism would be
meet the frequency requirementfdt) in the original time scale appropriate, given that long-term correlations are negligible over
amounts to generating two correlated unit-rate Poisson processésis time scale. The following sections explain why spontaneous
in the transformed time scale. For example, two unit-rate Poissoactivity, phasic responses, and tonic responses have been modelled
processes with a 25% correlation can be generated by simply swith different regularity parametersand how the values afhave
perposing a common Poisson process of rate 0.25 Hz with twdeen chosen.
independent Poisson processes of rate 0.75 Hz. The correlated
variable-rate switching GRPs are then obtained by mapping th% ontaneous dischar
correlated Poisson processes back into the original time scale,IO us discharge
inverting eqn. (6) which, again, is identical for both cells. We have chosen 10 spik&ssas a reasonable mean spontaneous
firing rate. Bishop et al. (1964) have shown that cells with such
activity levels are most often associated with under-dispersed
gamma-like or exponential-like (their Figs. 3A—3B), long-interval
Interactions exist between latency to spike discharge and the typeistograms, and so-called type 1 short-interval histograms (their
of visual stimulus: discharge latency seems to decrease when Fig. 5). The narrow peak near zero in long-interval histograms
centered spot grows as to cover the whole RF center (Bullier &appears to be made of ISls around 1-4 ms, which probably reflect
Norton, 1979, Fig. 8) or when the stimulus contrast is raisedthe contribution of high- and low-threshold bursts, according to the
(Hartveit & Heggelund, 1992). However, the latency of the pri- criterion of Lo et al. (1991) (see short-interval histograms). If we
mary excitation and secondary inhibition do not change when aneglect the occurrence of bursts during spontaneous activity, this
small light spot is flashed progressively further away from the RFallows us to smooth out the peak near zero in these histograms and
center (Singer & Creutzfeldt, 1970). While visual latency seems tao consider the ISI distribution as an under-dispersed gamima (
be negatively correlated with peak phasic discharge (Humphrey &) or an exponentialr(= 1).

Weller, 1988), Sestokas et al. (1991) report that visual latency in  Also, Teich et al. (1997, Fig. 3B) show a typical geniculate ISI
the LGN is not a straightforward function of amplitude or contrast. histogram that decreases linearly (in semilogarithmic scale) for
Our preliminary simulations have shown that an explicit depen-interval durations greater than 50 ms, that is, for frequencies lower
dence of discharge latency on stimulus location in the LGN modethan 20 spikess. This means that the empirically estimated inter-
is not necessary to account for a large body of experimental dataal pdf is exponential (in linear scale) in a range containing the
on the RF organization of cortical simple cells. Consequently, thdevel of spontaneous activity we chose. This is consistent, to some
delay between the stimulus presentation and the beginning of thextent, with spontaneous activity following a Poisson process. Ad-
firing was set to zero in all cases, irrespective of response ampliditional support that spontaneous firing is almost Poisson in the
tude, stimulus contrast, or stimulus position. anesthetized cat comes from Wilson et al. (1988, Fig. 1B). These
authors showed that the ISI standard deviation and the mean ISI
duration are linearly correlated with a slope close to one, which
impliesr ~ 1, by eqn. (5).

Stimulus dependence of visual latencies

Relevance of switching GRPs

Is it legitimate to model geniculate spike trains with renewal pro-
cesses? It has been shown that, during spontaneous activity, tli'ﬁsuall evoked disch
sequences of interspike intervals (ISls) derived from geniculate yev Ischarge
spike trains have a hidden temporal structure (Levine & Troy,ldentifying the kind of process that governs the visually evoked
1986; Teich et al., 1997) such that dependencies exist betweatischarge is a difficult problem since responses are highly nonsta-
nearby intervals (for example, an interval longer than averagdionary. Most studies have addressed the issue of intertrial vari-
tends to be followed by an interval shorter than average). On thability either in terms of mean rate or in terms of ISIs. Hartveit and
other hand, the intervals generated by a renewal process are b{eggelund (1994) have shown that the variance of the mean firing
definition independent. Therefore, strictly speaking, renewal protate increases linearly with the mean rate, in response to a spot
cesses are not appropriate to model spontaneous geniculate spilkeshed at different contrasts in the RF center. Levine et al. (1996)
trains. have reached the same conclusion for geniculate X-cells (Levine
However, the GRP is attractive because it is mathematicallyet al., 1996). Such a linear relationship is indeed what renewal
simple, depends only on two parametarsandr, and provides theory predicts [eqn. (7)]. These experimental results support the
reasonable fits in most cases (Teich et al., 1997). The suggestiomssumption that visually evoked discharges follow a GRP.
that have been made over the years to model geniculate sponta- What should be the value offor the segment of the switching
neous activity have used either basic GRPs (Munemori et al.GRP associated with the visually evoked discharge? Wilson et al.
1984), superpositions of GRPs, or random deletions of events froril988) provide evidence that visual responses to an optimal cen-
a GRP (Bishop et al., 1964). Later, more sophisticated methodtered spot flashed in the RF center follow a GRP with 1, since
have been developed with a view to incorporating the hidden temthe IS| standard deviatiosmr is linearly related to the mean inter-
poral structure into the simulated spike trains, but they were stilival pr with a slope slightly below 1 [egn. (5)]. In contrast, Hartveit
elaborations on the GRP: Levine and Troy (1986) proposed tand Heggelund (1994) find that the variance of the estimated firing
modulate the rate of a GRP with Gaussian white noise, and Teichate calculated from 500-ms samples increases linearly with the
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Using theerror function erf(x) = (2/v7) [y exp(—t?) dt leads to X'g = Xo COSH + Yo Siné,
1 Xo + a/2 Xo — a/2 Y'o = —XoSiné + y, cosb.
pPo = | erf —erf
4 o2 o2

When the stimulus is a centered spot of diamé&ethe output of the
spatial filter is

+b/2 —b/2
X [erf( Yot b/ ) - erf( Yo— b/ )] (A2)
oV2 oV2 po = 1— exp(—D%8c2).
When the bar is tilted by deg with respect to the abscigg# 0), the With stimulus contrast(t) defined as in eqn. (1), théime-dependent

integral of egn. (A1) is left unchanged as the coordinate system is rotatefiroduct of the stimulus and the Gaussian becomes
by 6 deg to bring its axes parallel to the axes of the bar, since the Gaussian
is circular. Eqn. (A2) can then be used with a new center p(t) = pol (1). (A3)



