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Abstract

The visual information that first-order cortical cells receive is contained in the visually evoked spike trains of
geniculate relay cells. To address functional issues such as the ON0OFF structure of visual cortical receptive fields
with modelling studies, a geniculate cell model is needed where the spatial and temporal characteristics of the visual
response are described quantitatively. We propose a model simulating the spike trains produced by cat geniculate
nonlagged X-cells, based on a review of the electrophysiological literature. The level of description chosen is
phenomenological, fitting the dynamics and amplitude of phasic and tonic responses, center0surround antagonism,
surround excitatory responses, and the statistical properties of both spontaneous and visually evoked spike trains.
The model, which has been constrained so as to reproduce the responses to centered light spots of expanding size
and optimal light and dark annuli, predicts responses to thin and large bars flashed in various positions of the
receptive field. The switching gamma renewal process method has been introduced for modelling spontaneous and
visually evoked spike trains within the same mathematical framework. The statistical structure of the spike process
is assumed to be more regular during phasic than tonic visual responses. On the whole, this model generates more
realistic geniculate input to cortex than the currently used retinal models.

Keywords: Cat, Lateral geniculate nucleus, Phenomenological model, Center0surround antagonism, Spike train,
Renewal process

Introduction

The cat lateral geniculate nucleus (LGN) is characterized by a re-
markably low level of convergence between the different functional
streams originating in the retina. Anatomical (Hamos et al., 1987;
Robson, 1993) and physiological studies (Singer & Creutzfeldt, 1970;
Cleland et al., 1971; Coenen & Vendrik, 1972; Kaplan & Shapley,
1984; Cleland & Lee, 1985; Mastronarde, 1992) support the view
that the retino-geniculate projection is so specific that one relay cell
receives its retinal input from very few (1–3) ganglion cells, at least
within the X pathway. In various respects, geniculate receptive fields
(RFs) are very similar to those of retinal ganglion cells. For exam-
ple, they exhibit an antagonistic center0surround organization (Hubel
& Wiesel, 1961), have roughly the same average center size at a given
excentricity (Cleland et al., 1971; Mastronarde, 1992), and can be
classified into very similar physiological X,Y, or W classes (Hoff-
mann et al., 1972; Wilson et al., 1976).

The main elaborations that occur in the RF of LGN relay
cells with respect to the RF of retinal afferents are due, among
other things, to the influence exerted by inhibition (Singer &
Creutzfeldt, 1970; Sillito & Kemp, 1983) and consist of lower

levels of spontaneous and evoked activity (Cleland & Lee, 1985),
enhanced center0surround antagonism (CSA; Maffei & Fioren-
tini, 1972; Hammond, 1973), sharper separation between phasic
and tonic discharges (Bullier & Norton, 1979), different statis-
tics in the maintained spike discharge (Bishop et al., 1964), and
a contribution of burst firing to the response (Guido et al., 1992;
Mukherjee & Kaplan, 1995).

Recent models of cat visual cortex have taken advantage of the
similarities between retina and LGN by modelling the geniculate
input to the cortical network as a direct transfer of the retinal signal
(Wehmeier et al., 1989; Wörgötter & Koch, 1991; Somers et al.,
1995). Taking a retinal model as direct input to a cortical model is
justified because these cortical models have addressed the issue of
orientation selectivity, namely, a feature not present in the LGN
and considered to emerge only at the cortical level (but see Vid-
yasagar & Urbas, 1982). The retinal models (Linsenmeier et al.,
1982; Richter & Ullman, 1982) have simply been used to provide
the cortical network with light-modulated synaptic excitation.

When addressing issues like the ON0OFF organization and
subfield antagonism of cortical simple cells, it is necessary to have
the right degree of CSA in the geniculate input. Since CSA is less
pronounced in the retina than in the geniculate, using a retinal
model as direct input to first-order cortical cells would drive them
too strongly in response to large stimuli. Sharpening the existing
retinal CSA level by modelling intrageniculate inhibitory inter-
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actions explicitly would be very expensive in the perspective of
large-scale neural simulations. Therefore, we preferred to keep the
simplicity and efficiency of the phenomenological retinal models
while extending their structure and updating the parameters closer
to the known properties of geniculate relay cells.

Because visually evoked spike trains are intrinsically stochas-
tic, a spike train model should take intertrial variability into ac-
count in addition to the average response. While the statistics of
spontaneousgeniculate activity has been extensively studied in the
literature (e.g. Teich et al., 1997), no model of thevisually evoked
discharge has emerged yet. We have reviewed the experimental
evidence available to date on geniculate firing during visual stim-
ulation and we conclude that a simple point-process model is suf-
ficient as a first approximation.

In this paper, we propose and discuss a phenomenological model
of individual nonlagged X geniculate RFs, built from a review of
the electrophysiological literature in the cat. This work has four
original features: (1) we focus on the restricted case of flashed bars
and radial symmetry of the spatial filters, which permits simple
analytical equations to be derived; (2) free parameters are intro-
duced that allow for separate tuning of the amplitude and dynamics
of the phasic and tonic discharges; (3) the degree of CSA and the
amplitude of the excitatory responses evoked from RF surrounds
have been set to match their physiological level in the LGN; and
(4) geniculate spike trains have been generated by a new and
simple method, the switching gamma renewal process, which al-
lows to model phasic and tonic responses with different statistics.
This model has been used as a realistic front-end in a modelling
study of the ON0OFF organization of visual cortical RFs (Gazères
et al., 1997).

Methods

Overview

Our purpose here is to develop a model that generates the signal
that first-order cells in cortex receive, namely, spike trains statis-
tically comparable to the discharge of individual geniculate cells in
response to visual excitation. While model spike trains should
exhibit some degree of intertrial variability, the histograms con-
structed by accumulatingn realizations of such spike trains should
converge to the usual visual poststimulus time histograms (PSTHs),
as n r `. The model proceeds in two steps: first, the stimulus
specification (Fig. 1A) is converted into a frequency waveform
(Fig. 1B) which is the theoretical counterpart of the PSTH; second,
spike trains are generated by a stochastic point process whose rate
function f ~t ! is the previously obtained frequency waveform
(Fig. 1C).

Stimulus specification

A spot is specified by its center location~x0, y0! and diameterD.
A bar is specified by its center location, widtha and lengthb and
angleu between the abscissa and the major axis (0# u , p!.
Stimulus contrast is modelled with a single scalarI (equivalent to
log DL0L, whereL is the luminance). Contrast is not systemati-
cally varied in this article, so in most cases, a bar brighter than the
background has contrastI 5 11 and a bar darker than the back-
ground has contrastI 5 21. Conventionally, an ON transition
refers to the appearance of a stimulus; an OFF transition refers to

the stimulus extinction. For instance, the ON transition of a dark
bar is a decrease in luminance. Stimuli are presented at timet0 and
removed at timet1, so the time-variable stimulus contrastI ~t! can
be described by the following piecewise constant function:

I ~t! 5 I0, if t0 # t , t1, I ~t! 5 0 otherwise (1)

Model structure for ON-center nonlagged X-cells

The model computes the contributions of eight sets of parallel
filters (Figs. 2 and 3). Each set is composed of a spatial integration
stage, followed by a convolution in the time domain and a non-
linearity. The contributions of the eight sets are then summed
together with a constant level of background activity. The result is
passed through a half-wave rectification, yielding the final wave-
form. Parameter values are summarized in Fig. 2 and an example
is shown in Fig. 3.

Fig. 1. Model overview. A: A stimulus is first specified in the visual plane
~x, y!. The origin represents the center of the model geniculate RF. Here,
a rectangular bar is centered at~x0, y0!, of width a and lengthb. The length
axis of the bar makes the angleu with the x axis. B: A number of spatio-
temporal filters (see text and Fig. 2) is then used to convert the stimulus
specification (A) into a continuous frequency waveform. C: Spike trains
are generated from the frequency waveform (B) using a switching GRP.
Visual examination shows that each raster bears strong similarity to the
frequency waveform and yet exhibits some degree of intertrial variability.
All rasters are aligned on time of stimulus presentation.
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Spatial filters

An individual LGN cell receives excitatory input from only a few
retinal ganglion cells. This excitatory input can be visually evoked
from a narrow retinal region overlapping the geniculate RF center.A
geniculate cell also receives visually driven inhibitory input, the ex-
act shape of which is not agreed upon (see Discussion) but the extent
of which is known to be wider than the excitatory input. Following
the methods introduced for retinal models (Rodieck, 1965; Linsen-
meier et al., 1982; Richter & Ullman, 1982), the spatial dependence
of such excitatory and inhibitory contributions to a receptive field
has been described here by circular bidimensional Gaussians:

G~x, y! 5
1

2ps2 expS2
x2 1 y2

2s2 D.

The Gaussian width is determined by the space constants. For all
s, the volumeEEG~x,y! dx dy under the surface equals 1. In Fig. 2,

row A, boxes with odd numbers (narrow Gaussians) represent the
spatial dependence of the center mechanism, while boxes with
even numbers (wide Gaussians) represent the spatial dependence
of the surround mechanism. The operation carried out at this first
stage is simply the spatial product between the stimulus and the
Gaussian profile (see Appendix).

Temporal filters

The impulse response stage is implemented to specify the temporal
dynamics of the waveform. In Fig. 2, impulse responses in boxes
B1–B2, and B5–B6 specify the phasic component of the discharge
and impulse responses in boxes B3–B4, and B7–B8 the tonic one.
Impulse responses in B1–B2 and B5–B6 are high-pass filters, mod-
elled as a difference of exponentials:

hphasic~t! 5 AF 1
t1

expS2t
t1
D2

1
t2

expS2t
t2
DG , t $ 0. (2)

Fig. 2. Spatiotemporal filters for the ON-center cell model. Spatiotemporal filters are numbered from 1 to 8, and consist of a spatial
(A), a temporal (B), and a nonlinear (C) stage (see Methods). The result of passing the stimulus through each of the eight sets of filters
A, B, C yields a function of time. These eight contributions are summed along with a constant level of spontaneous activity, and the
result is passed through a global rectification, producing the final frequency waveform. Columns with grey boxes represent center
contributions (see narrower Gaussians, row A); columns with white boxes represent surround contributions (wider Gaussians). Columns
3–4 and 7–8 in row B build the tonic component of the response; columns 1–2 and 5–6 in row B generate the phasic component. Spatial
parameters: A1, A3, A5, A7,s 5 0.11 deg. A2, A4, A6, A8,s 5 0.33 deg. Temporal parameters: B1, B2, B5, B6,t1 5 13 ms,t2 5
15 ms. B3, B4, B7, B8,t 5 15 ms. B1, B2,A 5 3370. B3, B4,B 5 74. B5, B6,A 5 1900. B7, B8,B 5 33. Nonlinearities: C1, C3,
C~x!. C2, C4,2C~x!. C5, C7,2C~2x!. C6, C8,C~2x! (see Methods).
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Impulse responses in B3–B4 and B7–B8 are low-pass filters im-
plemented as exponentials:

htonic~t! 5
B
t

expS2t
t D, t $ 0. (3)

In Fig. 2, the phasic and tonic impulse responses have been
split and represented separately for the sake of clarity. In addition,
separating temporal filters into phasic and tonic components makes
the fit of phasic and tonic response amplitudes simpler. The phasic
and tonic temporal waveforms for a step of contrast are obtained
by convolving the time-dependent output of the spatial stage [eqn.
(12)] with hphasic~t! andhtonic~t!, respectively:

W~t! 5E
2`

`

p~u!h~t 2 u! du.

The inhibitory signal is likely to be of longer latency than the
excitatory retinal input, since at least part of it is of intrageniculate
origin. However, we did not model this delay explicitly because
intracellular recordings have shown that inhibitory postsynaptic
potentials (IPSPs) can sometimes be recorded slightly ahead of
excitation (Singer et al., 1972), suggesting that the delay has some
intrinsic variability and is not critically needed to get plausible
geniculate responses.

Nonlinear stage

The nonlinear stage (Fig. 2, row C) uses the following half-wave
rectification function:C~x! 5 x, whenx . 0, andC~x! 5 0, when
x # 0. The nonlinearity of each given set of filters has two char-
acteristics. First, the position of the zero branch about the origin
determines whether the contribution comes from an ON- or OFF-

Fig. 3. Example of a frequency waveform computation. Inset at lower left shows an example stimulus: an optimal centered spot (white
disk) flashed on a grey background. Each box contains the result of the sequence of signal transformations laid out in Fig. 2. Top box
shows the temporal specification of the stimulus contrastI ~t! [eqn. (1)]. Boxes in row A plot the resultp~t! of the spatial integration
stage; these are simply scaled versions ofI ~t! [eqn. (A3)]. Boxes in row B plot the result of the convolution in the time domain. B1–B2
and B5–B6 contain the phasic templatesWphasic~t! resulting from applying the high-pass impulse responsehphasic~t!; B3–B4 and B7–B8
contain the tonic templatesWtonic~t! resulting from applying the exponential impulse responsehtonic~t!. Row C holds the result of
passing each box in row B through the associated nonlinearity. The eight contributions are then added together, along with the
spontaneous activity level. Note that the OFF transition results in a “negative frequency” at that stage (thick box). Lastly, the global
rectification eliminates all possible negative discharge, yielding the final frequency waveform (see text).
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center retinal afferent and which contrast change it allows to get
through. Second, the positive or negative value of the nonzero
branch determines whether the corresponding afferent input acts
through direct excitation or polysynaptic inhibition onto the post-
synaptic geniculate cell.

For example, C1 and C3 represent the excitatory influence
elicited by positive contrast change in the RF center. C2 and C4
represent the inhibitory influence exerted by positive contrast
changes in the surround. C5 and C7 represent the inhibition evoked
by negative contrast changes in the center. C6 and C8 represent the
excitation evoked by negative contrast changes in the surround.
The left half of Fig. 2 is called the “positive contrast” side because
nonlinearities retain only positive contrast changes. The right half
deals with negative contrast changes. As stated earlier, C1–C2 and
C5–C6 operate on the phasic response while C3–C4 and C7–C8
transform the tonic response.

Center0surround antagonism is implemented at the nonlinearity
stage. Consider each of the nonlinearity pairs C1–C2, C3–C4,
C5–C6, and C7–C8. In a given pair, the first nonlinearity is as-
sociated with a center contribution, and the second one with a
surround contribution having the same phasic0tonic property.
The nonlinearities in the pair retain the same contrast change, but
introduce a sign reversal between the center and the surround
contributions, which means that the center and the surround con-
tributions will act antagonistically.

An example of frequency waveform derivation

Fig. 3 shows how the model works in the case of a light spot
flashed in an ON-center RF. The excitatory contribution from the
ON-center mechanism is stronger than the inhibition from the
OFF-surround. The product of the stimulus with the spatial filters
returns a higher value for the center Gaussians (row A, grey boxes)
than for the surround Gaussians (row A, white boxes). The impulse
response stage (row B) then transforms the piecewise constant
functions of row A into phasic and tonic templates with an appro-
priate time course. The nonlinearity stage (row C) operates on the
templates by eliminating either the positive or the negative parts of
the phasic responses. For example, C1–C4 only retain the positive
part of the curves above them in row B, which correspond to the
positive contrast change. In addition, C2 and C4 change the sign of
the curve, so that, in the following summation thesurroundcon-
tribution of filter 2 will antagonize thecentercontribution of fil-
ter 1; this implements center0surround antagonism for the phasic
response. Likewise, C4 antagonizes C3 for the tonic response to
ON transitions of light stimuli.

Box C6 (Fig. 3) shows that the OFF transition of the centered
spot evokes a weak excitation from the OFF-surround, strongly
antagonized by the ON-center inhibitory influence (box C5), the
net result being a suppression. Boxes C7–C8 illustrate that in the
model the extinction of the visual stimulus produces no tonic com-
ponent; in this case, the OFF transition just evokes a suppressive
transient. If the stimulus instead was a light annulus flashed in the
OFF-surround, then the value of the spatial integration would be
higher for the surround than for the center, and the frequency
waveform would be negative, consistent with the suppression clas-
sically observed in this case (Fig. 8B).

Gamma renewal processes

The second step in simulating visually evoked geniculate spike
trains is to generate a spike train whose rate follows the frequency

waveformf ~t!. There is experimental evidence that the statistical
properties of spontaneous activity and tonic visual responses are
different from those of phasic visual responses (see Discussion). In
particular, initial phasic responses are more regular than in a Pois-
son process, which could be caused by an increased contribution of
bursts. Underestimating this regularity could introduce too much
variability in thenumberof geniculate spikes present in the phasic
discharge, thereby disorganizing the visual input onto first-order
cortical cells. Therefore, the switching gamma renewal process
method was applied, which allows to merge portions of spike
trains with different regularity levels.

Constant-rate gamma renewal processes

Renewal processes are processes in which the interevent intervals
are independent and identically distributed random variables (Cox,
1962). These processes have already been used to model neural
spike trains in retina and LGN (Kuffler et al., 1957; Bishop et al.,
1964; e.g. Teich et al., 1997). A constant-rate gamma renewal
process (GRP) is a renewal process where intervals are realizations
of a random variableT following a gammaprobability density
function ~ pdf !, with parameterl . 0 and regularityr . 0:

gT~t! 5 P$t , T , t 1 dt% 5 l
~lt! r21

G~r !
exp~2lt!, t $ 0,

(4)

where G~r ! is defined asG~r ! 5 *0
` t r21 exp~2t!dt. Such a

process has a mean ratef 5 l0r. Intervals have a mean duration
µT 5 r0l, a standard deviationsT 5 !r0l, and their coefficient
of variation is

CVT 5 sT 0µT 5 10!r. (5)

When r 5 1, the GRP is the classical Poisson process. When
r , 1, gT~t! r ` ast r 0 and the probability of high-frequency
bursts is high; the process is said to beover-dispersed(CV . 1).
Whenr . 1, gT~t! ' 0 ast r 0 and the probability of very closely
spaced events is very low, which acts like a refractory period; the
process is said to beunder-dispersed(CV , 1).

Whenr is an integer,G~r ! is the factorial~r 2 1)! and eqn. (4)
is thepdf of the sum ofr independent random variables following
an exponentialpdfwith parameterl. Put another way, in a Poisson
process of ratef 5 l in which only everyr th event is recorded, the
intervals are distributed according to eqn. (4).

Nonhomogeneous processes

A process is said to benonhomogeneouswhen its rate is a function
of time f ~t!. This represents the theoretical counterpart of a variable-
frequency spike train. Let a new time scalet be defined by

t~t! 5E
0

t

f ~u! du. (6)

Intuitively, when the ratef ~t! is high, closely spaced eventst1
andt2 will be mapped into event timest~t1! andt~t2! separated by
a long interval, meaning a lower instantaneous frequency. Like-
wise, intervals~t1, t2! wheref ~t! is low will be transformed into
shorter intervals in the new time scale. Hence with eqn. (6), the
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time axis is locally dilated or contracted to transform the time-
varying process into a constant rate process.

The usual method to generate a set of event times~t1, . . . ,tN!,
following the variable ratef ~t! (as in Fig. 1C), is to generate a
realization@t~t1!, . . . ,t~tN!# of a unit rate process and map it back
to the original time scalet by inverting eqn. (6).

Asymptotic behavior of the mean rate

For a general renewal process, the random variableNt is defined as
the number of events between 0 andt. The rate of the renewal
process over~0, t! can be estimated by the ratioNt0t. As t r `,
the mean and variance ofNt have the following limit behavior:
E~Nt! ' t0µT and V~Nt! ' sT

2t0µT
3 (Cox, 1962, 3.3). When the

renewal process is a GRP,sT0µT 510!r from eqn. (5). In addition,
as t r `, the estimated rate and its variance obey the following
equation:

V~Nt 0t!
E~Nt 0t!

'
1
rt . (7)

First interval of a stationary GRP

Consider a GRP that starts att0 # 0. If t0 5 0, then by definition,
the time until the first event aftert 5 0 follows the original gamma
pdf [eqn. (4)]; this is called thesimpleGRP. Now, ift0 , 0, there
may be one or more events betweent0 and 0, so the first event after
t 5 0 may no longer be the first event in the GRP. Consequently,
the interval between 0 and the first event aftert0 5 0 will not be
distributed according to eqn. (4) but to a distribution that is more
complex in general,exceptin the very fortunate case wheret0 5
2`; this is called thestationaryGRP. A fundamental theorem of
renewal theory (Cox, 1962, 5.2) indeed states that, in this case, the
pdf IgT~t! of the interval between 0 and the first event aftert 5 0
is a simple modification of the original gammapdf [eqn. (4)]:

IgT~t! 5
1
µT
F12E

0

t

gT~u! duG , t $ 0. (8)

Fig. 4 illustrates the difference between a simple (Fig. 4B) and
a stationary (Fig. 4D) GRP. Both processes are simulatedonly
betweent 5 0 andt 5 200 ms, but the simple GRP generally shows
a transient phase whereas the stationary GRP has reached steady-
state right from the beginning. The stationary GRP can be seen as
a simple GRP started att0 r 2` and observed only after time
t 5 0, the major computational advantage being that it is not
necessary to generate the full process since time immemorial.

The Poisson process is a special GRP~r 5 1! that has the
fundamental property of beingmemoryless: for any time t0, the
interval betweent0 and the first event aftert0 does not depend on
the history of the process beforet0: in a Poisson process,IgT~t! 5
gT~t! 5 l exp~2lt!. Conversely, any GRP withr Þ1 has memory.

Whenr is an integer, eqn. (8) can be simplified to the following
form:

IgT~t! 5
l
r Et

`

l
~lu! r21

~r 2 1!! exp~2lu! du

5
1
r (

k51

r

l
~lt!k21

~k 2 1!! exp~2lt!. (9)

Fig. 4. Interval distributions and PSTH of simple and stationary GRPs. In
the following, all processes and intervals have a ratef 5 l0r 510 spikes0s,
a regularity parameterr 5 5, and are simulated between timet 5 0 andt 5
200 ms (n5 5000). A: Histogram of the first interval in a simple GRP. The
histogram is an estimation of the gammapdf [eqn. (4)]. B: PSTH of a
simple GRP. B differs from A in that subsequent events in the process are
represented. Note that thesimple GRP reaches a steady rate only after
80–90 ms. C: Histogram of the first interval in a stationary GRP. The
histogram is an estimation of thepdf in eqn. (8), modified from eqn. (4).
D: PSTH of a stationary GRP. D differs from C in that all events between
t 5 0 andt 5 200 ms in the process are represented. D is called astationary
GRP, because its rate reaches steady-state right after timet 5 0 ms. Bin
width 5 1 ms.
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This has the following interpretation: the first event aftert 5 0
in the stationary GRP of parameterl, orderr and ratef 5 l0r can
be the first, the second, . . . or ther th event in the underlying
Poisson process of ratef 5 l. In a simple GRP started att0 r 2`,
the first event aftert 5 0 can be any of theser events with the same
probability 10r.

Switching gamma renewal process

Our focus is to generate geniculate spike trains in response to a
flashed stimulus, which typically involve portions of spontaneous
activity, phasic discharge, and tonic discharge (e.g. Fig. 6B). The
spike trains from those three episodes follow statistics of differing
orders (see Discussion). Thus, we have introduced a modification
of the classical GRP, named theswitching GRP, in order to provide
an easy solution to the differential modelling of those three phases
within the same mathematical framework.

We define aswitching GRPas a concatenation ofstationary
GRPs, all of which have the same mean rate. Theith GRP is
defined only over the bounded interval@ti , ti11! and has its own
regularity parameterri . Importantly, at each transition timeti , the
first interval in thei th GRP is generated using eqn. (8), not eqn.
(4). Subsequent intervals are generated according to eqn. (4) until
the event of theith GRP falls out of interval@ti , ti11! (this event is
discarded). Thenonhomogeneousswitching GRP can be con-
structed by mapping realizations of a unit rate switching GRP of
order r back to the original time scale with eqn. (6).

An example of switching GRP is shown in Fig. 5A. Regularity
in the spike train increases asr gets higher. In this example,reg-
ularity changes but therate keeps constant. In the general case, it
is possible to use both a time-dependent rate and time-dependent
regularity. Fig. 5B shows a concatenation ofsimpleGRPs in which
the first interval after the transition in regularity (arrows) is gen-
erated with the original gammapdf [eqn. (4)]; note that this process
is not a switching GRP.

In the geniculate model, the set of regularity transition times for
the switching GRP is a function of the frequency waveform de-
fined as follows:r 5 1 on intervals where the instantaneous re-
sponse frequency is lower than 65 spikes0s andr 5 5 where it is

Fig. 5. Examples of switching and non-switching GRPs. A: A switching
GRP with f 5 50 spikes0s is simulated betweent 5 0 andt 5 1000 ms.
Transitions in regularity (arrows) occur every 200 ms. Raster plot shows
the first 25 single realizations of the switching GRP, aligned on time
t 5 0 ms. The histogram compiles 500 realizations of the switching GRP,
including the 25 displayed. At each transition time, the first interval is
generated with themodifiedgammapdf [see eqn. (8) and Fig. 4C]; sub-
sequent intervals are generated with the classical gammapdf [eqn. (4)]. The
higher the regularityr, the more intervals tend to be concentrated around
their mean duration. Whenr 5 1, the switching GRP is statistically equiv-
alent to a Poisson process. Using the modified gammapdf makes the
transition between different regularity periods very smooth. The histogram
estimatesf very closely; there is no sign in the histogram which reveals the
underlying transitions in regularity. Bin width5 2 ms. B: A concatenation
of GRPs is simulated with the same conventions and characteristics as in
A, exceptthat the first interval after a regularity transition is generated with
theoriginal gammapdf [see eqn. (4) and Fig. 4A]. This process is thus not
a switching GRP. In this case, transitions in regularity are obvious in the
histogram (first three arrows). Dips at the first and third arrows correspond
to the slow rise of Simple GRPs (Fig. 4B). The oscillatory pattern (second
arrow) is due to the high regularity (r 5 50) of spike trains and their
reproducibility from trial to trial in this portion. At the beginning of the
Poisson portion (arrow with asterisk), the switching and non-switching
case are statistically identical.
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higher (see Discussion). Different frequency waveforms have dif-
ferent sets of regularity transition times, in general.

Model structure for OFF-center nonlagged X-cells
We have assumed symmetry between ON-center and OFF-

center geniculate RFs, but the alterations of Fig. 2 to transform the
ON-center model into an OFF-center one are straightforward: non-
linearities are flipped about they axis. Hence, functions become
C~2x! in C1,C3;2C~2x! in C2,C4;2C~x! in C5,C7; andC~x!
in C6,C8. This transformation means that spatio-temporal filters
will play the same functional role, but for the opposite contrast.
Other parameters are unchanged.

Simulation software
The simulations were carried out using the Surf-Hippo 2.7

neuron simulator package (Borg-Graham, 1997), on a SPARC-
station 5 running Solaris 2.4. Code is available by ftp from
cogni.iaf.cnrs-gif.fr. We used the random number generator pro-
vided with the CMU Common Lisp environment, version 18a.

Results

In this section, we describe how we extracted the parameters of the
model from the electrophysiological literature. Whenever possible,
we tried to compare the experimentally derived estimates provided
by several authors and different protocols.

Spontaneous activity

Spontaneous activity is a random discharge that occurs in LGN
cells when they are subjected to no visual stimulation other than a
uniform background luminance. An overestimation of this quantity
may result in unstable “resting” states in the cortical network; an
underestimation may decrease the excitability and integrative prop-
erties of whichever cells receive the geniculate background syn-
aptic noise. Spontaneous activity can also be envisioned as a mean
level that the visual signal can modulate up and down (Kuffler
et al., 1957).

A reference level for spontaneous activity is very difficult to
define since, in the general case, it depends on the visual adapta-
tion level of the retina (Kaplan et al., 1979), on the arousal state of

the animal (Sakakura, 1968; Livingstone & Hubel, 1981) and on
the anesthetics (Levick & Williams, 1964). We have chosen to
model a physiological state close to the usual experimental prep-
aration: an anesthetized animal in the mesopic ambient luminance
range (0.1 to 25 cd0m2, Hammond & James, 1971).

The estimates of spontaneous activity in geniculate X-cells pro-
vided by several authors have been summarized in Table 1. As
assessed by these results, a spontaneous discharge frequency of 10
spikes0s seems in the physiological range. This is the value we
chose for both ON- and OFF-center X-cells in the model.

Receptive-field center size

The average RF center size increases from thearea centralisto the
visual-field periphery (Hubel & Wiesel, 1961). In our model, the
center size is defined as the diameter of the centered spot eliciting
maximum response. Pooling all eccentricities and cell types, the
RF center diameter varies between 0.3 and 2.0 deg in the light-
adapted state (Virsu et al., 1977). The apparent RF center size has
a tendency to widen in the dark-adapted state (Virsu et al., 1977),
up to threefold (Kaplan et al., 1979). A comparison of estimates of
the mean RF center size provided by various authors is given in
Table 1. We chose 0.5 deg as the RF center diameter of our generic
X-cell, which corresponds to the average RF center diameter for
X-cells with a single retinal afferent at an approximate eccentricity
of 6.0 deg, in the mesopic background luminance domain. To-
gether with the constraint on CSA (see below), this choice could be
satisfied by setting the space constant of the center Gaussian to
sin 5 0.11 deg and that of the surround gaussian tosout5 0.33 deg.

Phasic and tonic responses to an optimal spot

When a small light spot is flashed in the center of an ON-center
cell, the cell first responds with a short high-frequency phasic
discharge, followed by a longer tonic discharge. The phasic dis-
charge in response to an optimal spot lasts about 50 ms on the
spatio-temporal maps of Bullier and Norton (1979, Fig. 2C). The
primary excitation described by Singer and Creutzfeldt (1970) was
reported to last about 30 ms, but this might be an underestimation
of the transient peak due to a pronounced secondary inhibition
(transient suppression between the phasic and the tonic responses,

Table 1. Center size and spontaneous activity derived from the experimental literaturea

Spontaneous activity (spikes0s)

References Eccentricity (deg) Center size (deg) ON-center OFF-center

Bullier & Norton (1979) ,10.0 0.51 7.86 4.6 8.06 4.2
Wilson et al. (1976) All 0.5 (0.3–1.0) 2.5–12.5 0.0–7.5
Hoffmann et al. (1972) 3.0–10.0 0.67 —
Sanderson (1971) 4.0–8.0 0.8–0.9 —
Saul & Humphrey (1990) Around 10.0 0.7 (0.2–2.0) —
Teich et al. (1997) — — 6.6
Levine & Troy (1986) — — 15

XS XM XS XM

Mastronarde (1992) Around 6.0 0.51 0.87 116 7 116 9

aThis table summarizes the average center size (in deg) and the mean spontaneous activity (in spikes0s) for X-cells at different
eccentricities. Spontaneous activity in Bullier and Norton (1979) and Mastronarde (1992) are means6 s.d. XS: single-afferent X-type
relay-cell; and XM: multiple-afferent X-type relay-cell.
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see Discussion). In the impulse response given by a difference of
exponentials [eqn. (2)], we chose values oft1 5 13 ms andt2 5
15 ms, yielding a width at half-height of 38 ms in the phasic
waveform.

Humphrey and Weller (1988, Fig. 6) have provided a distribu-
tion of the peak frequency during the phasic discharge of non-
lagged X-cells in response to spots 60% larger than the center. This
might have underestimated the maximal response because of center0
surround antagonism. The rates ranged between 50 and 400 spikes0s,
with a mean of 161 spikes0s (contrastDL0L 5 0.6). Saul and
Humphrey (1990) reported a slightly lower estimate (131 spikes0s)
but with lower contrast (DL0L 5 0.4). In addition, there is indi-
cation that the peak phasic discharge may actually be higher for
multiple-input (2756 89 spikes0s) than for single-input X-cells
(1576 83 spikes0s), in response to an optimal spot (Mastronarde,
1992). Taking 160 spikes0s as a first approximation to the peak
phasic discharge frequency seems a reasonable value for non-
lagged X-cells with a single retinal input.

Is there a relationship between phasic and tonic discharge levels
in a given cell? Bullier and Norton (1979) have defined the phasic0
tonic index as the ratio of the tonic discharge to the peak phasic
frequency (spontaneous activity subtracted). This index was esti-
mated to 346 18%, which gives a tonic discharge of 61 spikes0s,
assuming a spontaneous discharge level of 10 spikes0s and a peak
phasic discharge of 160 spikes0s. Similarly, Saul and Humphrey
(1990) computed the ratio of mean to maximal discharge, without
subtracting spontaneous activity. This ratio was 386 16% for
nonlagged X-cells and gives a tonic discharge of 60.8 spikes0s,
consistent with the above study.

We therefore decided that in our model the response of a non-
lagged X-cell to an optimal centered spot, at the fixed level of
contrast that we have chosen, would consist of a phasic discharge
of 160 spikes0s, followed by a tonic discharge of 60 spikes0s
(Fig. 6B). This allowed to constrain the impulse response ampli-
tudesA andB [eqn. (2,3)] on the “positive contrast” half of Fig. 2
(A in B1–B2 andB in B3–B4). These parameters are closer to the
behavior of single-input X-cells than multiple-input X-cells, but
this choice seems justified in that single-input X-cells dominate in
the neighborhood of thearea centralis(Mastronarde, 1992).

Center/surround antagonism

When a small light spot is flashed over the RF center, the response
is initially weak. As the spot diameter increases, the response
grows because of spatial summation in the center. When the spot
is enlarged so as to encroach on the surround, the cell responds less
strongly; this is referred to as center0surround antagonism (Hubel
& Wiesel, 1961; Hammond, 1973; Bullier & Norton, 1979).

The degree of CSA is all the more pronounced as (1) the cell is
further away from thearea centralis(Hubel & Wiesel, 1961), and
(2) the RF center is small (Hammond, 1973; Bullier & Norton,
1979). As stated earlier, there is considerable experimental evi-
dence that RF surrounds are more potent in antagonizing the center
excitatory responses in geniculate cells than in retinal ganglion
cells (Maffei & Fiorentini, 1972; Hammond, 1973; Bullier & Norton,
1979; Sillito & Kemp, 1983; Cleland & Lee, 1985). Sillito and
Kemp (1983) have shown that this is at least partially due to
intrageniculate GABAergic inhibition, since iontophoresing the
GABAA receptor antagonist bicuculline reduced the degree of ge-
niculate CSA to values observed at the retinal level.

Many examples in the literature give quantitative indications as
to the level of CSA in the LGN. Bullier and Norton (1979, Fig. 8A)

show an X-type RF whose center diameter is 0.4 deg, and whose
response is totally suppressed for a stimulus 2.4 deg in diameter. In
Fig. 4 of Hammond (1973), the RF center is about 2.0 deg wide,
and the response falls to 10% of optimal for a spot diameter of
8.0 deg. Likewise, Hammond (1972, Fig. 7A) shows a cell with a
RF center 0.75 deg in diameter and a response 10% of maximal at
a spot diameter of 3.0 deg. Another example from Sillito and
Kemp (1983, Fig. 8) is an ON-center X-cell with a center diameter
of 0.5 deg with a response 5% of maximal at a spot diameter of
2.0 deg.

These data may be reasonably summarized by considering that
the response to a centered spot with a diameter four times as large
as the center is less than 10% of the optimal spot response (crite-
rion 1). This conclusion has been drawn from a collection of iso-
lated examples because we could not find an estimation (based on
a large sample of cells) of what the spot size should be to get a
fixed reduction (e.g. 90%) of the optimal spot response, except in
Hammond (1973): for cells with an RF diameter of 0.5 deg, he
estimated the discharge would fall to 60% of maximum for spot
diameters of 0.8–0.9 deg (criterion 2).

We found that both criteria could be met by considering a
simple difference of iso-volume bidimensional Gaussians: the peak
phasic response to a 0.9-deg spot is 99 spikes0s, namely 62% of
the peak phasic discharge in response to an optimal centered spot
(0.5 deg, 160 spikes0s). Moreover, with this choice, the peak pha-
sic response (including spontaneous activity) to a 2.0-deg spot
diameter is 8% of maximum. Following Hammond (1972), we
assume that the same degree of CSA exists for the phasic and tonic
responses. The iso-volume assumption translates into using the
same impulse responses in each pair of antagonistic center0
surround filters (Fig. 2, row B).

Fig. 6 shows the behavior of the model in an expanding spot
protocol. The small spot in Fig. 6A covers only part of the RF
center, yielding a suboptimal response. Fig. 6B is the optimal
spot response described earlier. The phasic discharges in
Figs. 6A, 6B, and 6C are generated using the high-regularity
GRP (r 5 5), because the frequency is above 65 spikes0s; all
other portions of the responses are generated by Poisson pro-
cesses (r 5 1, see Discussion). Figs. 6C and 6D show how
responses get weaker when the spot covers part of the surround.

Cleland and Lee (1985, Fig. 4) show the differential CSA be-
tween a single geniculate cell (RF center diameter, 0.65 deg) and
its main retinal ganglion cell afferent: in a nonlagged geniculate
X-cell, the response to a 2.5-deg spot is almost brought down to
the spontaneous level, whereas the same response has barely de-
creased from the optimal spot response in the main retinal afferent.
Fig. 7 summarizes the comparative performance of the retinal
model used in Somers et al. (1995) together with our work and the
typical data from Sillito and Kemp (1983, Fig. 8).

Excitatory responses from the surround

It is known that geniculate RF surrounds are not only capable of
antagonizing the center’s excitatory responses but also of produc-
ing themselves a discharge in response to annuli or spots of the
proper contrast (Hubel & Wiesel, 1961, Fig. 1D; Singer &
Creutzfeldt, 1970, Fig. 4; Sillito & Kemp, 1983, Figs. 2 and 3;
Cleland & Lee, 1985).

Spatial summation occurs in the surround too. When the inner
diameter of a light-centered annulus that initially covers only the
far OFF-surround decreases, the excitatory response at light OFF
increases (Cleland & Lee, 1985, Fig. 7B). When the inner diameter
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Fig. 6. Simulated expanding spot protocol. This figure shows the responses of a model geniculate nonlagged ON-center X-cell to
centered spots of expanding diameter and positive contrast. RF center diameter is 0.5 deg (dashed circle). Light spots are represented
as white disks. On this figure and the following, background luminance is represented as a grey rectangle. This rectangle is represented
as finite but should be seen as spanning the whole visual field. Spot diameter is 0.25 deg in A, 0.5 deg in B (optimal stimulus), 1.0 deg
in C, and 1.5 deg in D. In all plots, the stimulus is presented att 5 200 ms and disappears att 5 600 ms (black bar). Histograms are
compiled from the 25 spike trains shown above. The continuous line represents the ideal frequency waveform from which the spike
trains are generated. A–D: Bin width5 5 ms, contrastI 5 1.0. Peak phasic discharge level (spikes0s): A, 110; B, 161; C, 82; D, 27.
Tonic discharge level (spikes0s): A, 43; B, 60; C, 34; D, 16.
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of the annulus becomes smaller than the RF center diameter, the
response decreases, meaning that the center also exerts antagonism
on the surround response (Cleland & Lee, 1985, Fig. 6B).

The stimulus used to measure surround responses is usually an
annulus that optimally covers the surround. The outer diameter of
this optimalannulus is very large and its inner diameter is the RF
center diameter. With such a protocol, Cleland and Lee (1985,
Figs. 7A, and 7B) showed that peak phasic surround responses can
be very similar in amplitude to optimal centered spot responses.
The excitatory strength of surrounds is extremely variable from
cell to cell; indeed, Horton and Sherk (1984, Fig. 6) found that the
ratio of the optimal annulus response to the optimal spot response
could vary between 0% and 100%, occasionally rising above 100%,
with an average of 45%.

We assume in the model that the presentation of a dark annulus
in the OFF-surround of an ON-center cell also produces a phasic
and a tonic discharge, the amplitude of which can be scaled from
the optimal spot response by applying the proportionality factor
(45%) found by Horton and Sherk (1984). The response to a dark
optimal annulus thus consists of a peak phasic discharge of about
78 spikes0s, and a tonic discharge of about 33 spikes0s (sponta-
neous activity included).

This data allows to calibrate the impulse response amplitudesA
andB in the right half of Fig. 2 (A in B5–B6 andB in B7–B8).
Fig. 8A shows the response of an ON-center RF model to a dark
optimal annulus flashed above the OFF-surround. Fig. 8B illus-
trates the response to a light annulus; an initial suppression is
followed by a phasic discharge at the OFF transition.

Fig. 7. Comparative center0surround antagonism levels. Discharge levels
are measured in response to centered spots of varying diameters. Response
amplitudes normalized to the maximum response are plotted versus spot
diameter (log coordinate alongx). Solid line is the curve plotted in Sillito
and Kemp (1983, Fig. 8); this curve was chosen since the cell has prop-
erties very close to the specification of our model: it is a (probably non-
lagged) geniculate ON-center X-cell with an RF center size of 0.5 deg.
Short dashed lineshows the center0surround antagonism behavior of the
model described in this paper, very close to the experimental data of Sillito
and Kemp (1983).Long dashed lineshows the center0surround antagonism
of the retinal model by Somers et al. (1995); the level is adequate at spot
diameters up to 1.0 deg, but the surround is much less efficient at antag-
onizing the center excitatory response at larger diameters.

Fig. 8. Model responses of an ON-center cell to light and dark optimal annuli. An optimal annulus has an inner diameter equal to the
RF center diameter (0.5 deg), and an infinite outer diameter (represented as finite, for obvious reasons). This is the stimulus that can
evoke the maximum response from the surround. A: A dark optimal annulus (black annulus) is flashed above the OFF-surround.
Presentation evokes an excitatory response. Peak phasic response, 78 spikes0s; tonic response, 32.5 spikes0s. ContrastI 5 21.0,
n 5 25. B: A light optimal annulus (white annulus) is flashed above the OFF-surround. Annulus presentation suppresses spontaneous
discharge; withdrawal evokes a phasic response only. Peak phasic response, 47 spikes0s. ContrastI 5 1.0,n 5 25. Other conventions
are as in Fig. 6.
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Generalizing the model to bar responses

Modelling geniculate responses to flashed bars is important since
studies of cortical visual responses often use such stimuli. The
visual responses to flashed bars shown in Figs. 9 and 10 differ
from the model responses shown so far (optimal spot responses
and optimal annulus responses) in that they have not been used to

design the model or to constrain its parameters. They represent a
test of the model on a new kind of visual stimulus. The general-
ization to a new kind of stimulus geometry is critically dependent
on the assumption of linearity in the spatial summation properties
of geniculate RFs (see Discussion).

To our knowledge, the only examples of geniculate responses
to bars flashed in the surround are provided by the spatio-temporal

Fig. 9. Response to light bars flashed in various RF positions in the model geniculate nonlagged ON-center X-cell. Bar dimensions:
A–C, 0.53 2.0 deg. D, 13 2 deg. Peak phasic response (in spikes0s): A, 106; B, 12.5; C, 21 (at light OFF); D, 40. Tonic response
(in spikes0s): A, 42; B, 10.8; C, no tonic response; D, 20 (see text). ContrastI 5 1.0, n 5 25. Other conventions are as in Fig. 6.
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maps of Bullier and Norton (1979) and the results of Tanaka (1983,
Figs. 7, and 8). The spatio-temporal maps use thin bars in order to
estimate the RF sensitivity profile precisely, at the cost that they
may not be able to evoke significant excitation from the surround.
On the other hand, the bars used by Tanaka (1983) are of the size
typically used when studying cortical RFs.

Both protocols were simulated in the model and yield results
similar to the experimental findings. Fig. 9A shows the response to
a light bar flashed in the RF center, and this strong response is
comparable to that shown by Tanaka (1983, Figs. 7D and 8D).
When flashed in the OFF-surround (Fig. 9C), the light bar com-
pletely suppresses the geniculate response with a little discharge at
light-OFF. This is similar to the result of Tanaka (1983, Fig. 7F).
Fig. 10 shows a simulated spatio-temporal map. The bar dimen-
sions and shift were adjusted as in Bullier and Norton (1979), with
a bar length 0.8 times the RF center diameter and a width 0.3 times
the RF center diameter. Since the bars are much smaller than in
Fig. 9, contrastI was increased up to 3.0 to produce a stronger
response. The overall spatial pattern of excitatory responses and
suppressions in the simulations look very similar in many respects
to the experimental X-cell maps (Bullier & Norton, 1979, Figs. 2,
3, and 5A–5C). Phasic responses have the same lateral extent as
tonic responses, which was claimed to be a distinguishing feature
of X-cells.

Tanaka (1983, Figs. 7D and 7F) shows a cell whose response to
a bar flashed in the surround is only 10% of the response to the
same bar flashed in the RF center. The ratio is 20% in our model
(106 versus21 spikes0s, Figs. 9A and 9C). Note that the cell
shown by Tanaka (1983, Fig. 7F) has a phasic (but no tonic)
suppression of spontaneous activity in response to a light bar flashed
in the OFF-surround, whereas tonic suppression is complete in our
model (Fig. 9C; Fig. 10, position 1). The results by Bullier and
Norton (1979) are intermediate. It is not known whether Tanaka’s
situation is typical and, in any case, the experimental literature
really does not give enough quantitative data yet to suggest dif-
ferential modelling of the phasic and tonic surround suppression.

Discussion

The main result brought by this model is an operational method for
generating geniculate spike trains in response to flashed spots and
bars. The receptive-field part of the model has been constrained
according to the visual properties of cat geniculate nonlagged
X-cells. The spike train generation mechanism has been designed
to fit the statistical properties of spontaneous and visually evoked
geniculate firing. The resulting model can be used to generate a
more realistic input to a cortical network than classical retinal
models.

Essential differences with retinal models

Geniculate X-cells differ from retinal ganglion X-cells in their
level of spontaneous activity, relative phasic and tonic response
amplitudes, spike train statistics and the existence of burst firing,
and the level of center0surround antagonism. So far, cortical mod-
elling studies (Wehmeier et al., 1989; Wörgötter & Koch, 1991;
Somers et al., 1995; Maex & Orban, 1996) have resorted to retinal
ganglion cell models to provide visual excitation to the cortical
network since no operational geniculate X-cell model was available.

In severals respects, our geniculate model is different from the
usual retinal models and modifying the latter in minor ways could
not overcome their fundamental limitations. First, within the X
pathway, the retino-geniculate projection is usually one-to-one,
with a transfer ratio in anesthetized preparations rising from low
values during spontaneous activity up to 80% in response to drift-
ing gratings of optimal temporal frequency (Hamamoto et al.,
1994) and up to 100% during phasic responses to flashed spots
(Hartveit & Heggelund, 1995). Under these visual stimulation con-
ditions, excitatory postsynaptic potentials (EPSPs) are so powerful
that almost all retinal spikes elicit a geniculate spike. In contrast,
geniculo-cortical projections involve some degree of convergence
(Tanaka, 1983) andstrong phasic dischargesare needed from a
number of presynaptic geniculate cells to drive the cortical target

Fig. 10. Simulated spatio-temporal map in the model geniculate nonlagged ON-center X-cell. A thin light bar was flashed in 51
overlapping positions across the receptive field. Each response is displayed as a raster. The stimulus positions span 1.5 deg, that is three
times the RF center diameter. On the left, relative locations of the stimulus and the receptive-field center are shown for three stimulus
positions. The bar and the receptive-field center are drawn at the same scale. The shaded rectangle represents the background
luminance. Light bars are flashed ON att 5 100 ms and OFF att 5 600 ms. Receptive-field center diameter, 0.5 deg. Bar dimensions,
0.43 0.15 deg. Step between two positions, 0.03 deg. Note that contrastI 5 3 here. Other conventions are as in Fig. 6.

Model of visually evoked spike trains in cat LGN 1169



cell. Therefore, modelling the phasic discharge with the right fre-
quency and the right regularity is critical in having the necessary
number of spikes to evoke a response from the cortical network.
However, our preliminary simulations of the cortical network show
that if the amplitude of the tonic geniculate response is not signif-
icantly attenuated relative to the phasic input, as is the case for
retinal models, then the network will receive too much tonic ex-
citation and be driven into an unrealistic state of activity. For this
reason, it is fundamental to dissociate the amplitudes of phasic and
tonic discharges, which we did by splitting the filters into a phasic
set and a tonic set.

Second, in the model that we propose, center0surround antag-
onism is quantitatively close to its experimentally measured level.
In particular, geniculate surrounds are strong enough to antagonize
center responses to large centered spots, which is of major impor-
tance in a model of the ON0OFF organization of simple receptive
fields. While it is true that retinal models could be modified in
minor ways to account for the level of CSA found in the LGN, they
cannot account for the amplitude of the surround excitatory re-
sponses and their intercell variability. Indeed, in retinal models, the
response to a light spot flashed in the center and the response to a
dark annulus flashed in the surround cannot be constrained sepa-
rately because these models are made of only two spatio-temporal
filters. The exact level of surround excitatory responses has always
hindered investigators from interpreting the origin of distinct sub-
regions within the same cortical simple RFs and from distinguish-
ing the relative influence of the thalamo-cortical and intracortical
mechanisms. Also, in a given geniculate cell, the optimal annulus
response can be any percentage of the optimal spot response. Should
this intercell variability be ever included in the thalamic stage of a
cortical model, it could not be if the model does not allow some
fine differential tuning of the center and surround excitatory re-
sponses. Accordingly, we have split the filters for center and sur-
round responses.

Lastly, more sophisticated models of spontaneous geniculate
firing have been proposed (Levine & Troy, 1986; Teich et al.,
1997) but the issue of visual responses was left apart. In these
studies, spontaneous activity was modelled over long periods of
time ('80 min), whereas we focus on a much shorter time scale
('1 s), neglecting the hidden long-term temporal structure. The
switching GRP method (see below) allows to model spontaneous
and visually evoked spike trains within the same mathematical
framework.

Spatial dependence of visual inhibitory input

At the retinal level, circular Gaussians have been shown to provide
excellent fits to the spatial dependence of both center and surround
influences (Rodieck, 1965; Enroth-Cugell & Robson, 1966). In the
LGN, there is still controversy about the exact shape of the inhib-
itory input, with some authors claiming that it also has a Gaussian
profile, and others arguing that it looks more like a doughnut.
Singer and Creutzfeldt (1970) have shown with quasi-intracellular
recordings that inhibitory visual input to the geniculate cell in-
creased when a small spot was flashed further away from the RF
center. However, Coenen and Vendrik (1972) have observed that
hyperpolarizations were present even in responses elicited by stim-
ulation of the center only. Besides, simultaneous recordings of
both retinal inputs (S-potentials) and cell output (spikes) have
shown that for small spots covering only part of the center, genic-
ulate response was already weaker than the retinal input signal

(Cleland & Lee, 1985; Fjeld et al., 1997) and the transfer ratio was
lower than one, suggesting that visually driven geniculate inhibi-
tion is already effective across the RF center.

Therefore, we modelled the surround with a circular Gaussian.
Doing so introduces just one parameter, the standard deviations,
which is easy to calibrate with center-surround antagonism, whereas
a doughnut profile would need two parameters. In addition, the
numerical integration with a Gaussian is made very efficient by
eqn. (A1).

Linearity in the spatial domain

Linearity in the dependence of the response on the stimulus shape
is a major assumption in our model, as it was in earlier retinal
models. If the cell is known to behave linearly, its response to any
stimulus geometry can be predicted from the responses to more
simple patterns. This assumption of linearity has been shown to be
valid for X-cells with the method of the bipartite field (Kratz et al.,
1978; Bullier & Norton, 1979) or the method of contrast reversal
gratings (So & Shapley, 1979).

Postphasic suppression

Some authors describe a “secondary inhibition,” or “postphasic
suppression” between the phasic and tonic discharge (Singer &
Creutzfeldt, 1970; Coenen & Vendrik, 1972, Fig. 2; Hammond,
1973; Virsu et al., 1977). Yet, it is noted elsewhere that this sup-
pression disappears during dark adaptation (Virsu et al., 1977),
that for nonlagged X-cells it is only present at high stimulus con-
trasts (Hartveit & Heggelund, 1992), and that above all this sup-
pression may be dependent on the anesthetic employed (Cleland &
Lee, 1985). Therefore, this characteristic was not incorporated in
the model.

Contrast dependence

The parameters we found are valid at relatively low contrasts. At
higher contrasts, nonlinear behaviors appear and responses saturate
(Cleland & Lee, 1985; Hartveit & Heggelund, 1992). Flashing
higher contrast stimuli presumably evokes a more significant con-
tribution from intra-geniculate inhibition; therefore, modelling net-
work effects may be necessary to account for the contrast dependence
of the response in the general case. Geniculate network effects
were neglected here because we wanted to keep the model at the
same phenomenological level as earlier ganglion cell models (Ro-
dieck, 1965; Linsenmeier et al., 1982; Richter & Ullman, 1982) in
particular for application to large-scale neural simulations (e.g.
Somers et al., 1995; Maex & Orban, 1996).

Correlations between geniculate cells

It has recently been shown that neighboring geniculate relay cells
exhibit correlated firing on a fast time scale in response to visual
stimulation (Alonso et al., 1996). Indeed, the transfer ratio between
retinal input and geniculate spike output is close to one and neigh-
boring retinal ganglion cells themselves have correlated firing (Mas-
tronarde, 1983). A retino-geniculate divergence factor higher than
one might also explain correlations between geniculate cells fed by
the same axon. Coincidence in the discharge of presynaptic genic-
ulate cells might enhance their ability to bring the cortical target
cells to threshold.
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In our model, it is possible to incorporate correlations on a fast
time scale between the spike trains of cells whose RFs are of the
same center type and overlap, in a straightforward way. When RFs
overlap, the frequency waveformsf ~t! computed for both cells are
equal for any stimulus and hence, the mappings described in eqn.
(6) are identical. Generating two correlated switching GRPs that
meet the frequency requirement off ~t! in the original time scale
amounts to generating two correlated unit-rate Poisson processes
in the transformed time scale. For example, two unit-rate Poisson
processes with a 25% correlation can be generated by simply su-
perposing a common Poisson process of rate 0.25 Hz with two
independent Poisson processes of rate 0.75 Hz. The correlated
variable-rate switching GRPs are then obtained by mapping the
correlated Poisson processes back into the original time scale,
inverting eqn. (6) which, again, is identical for both cells.

Stimulus dependence of visual latencies

Interactions exist between latency to spike discharge and the type
of visual stimulus: discharge latency seems to decrease when a
centered spot grows as to cover the whole RF center (Bullier &
Norton, 1979, Fig. 8) or when the stimulus contrast is raised
(Hartveit & Heggelund, 1992). However, the latency of the pri-
mary excitation and secondary inhibition do not change when a
small light spot is flashed progressively further away from the RF
center (Singer & Creutzfeldt, 1970). While visual latency seems to
be negatively correlated with peak phasic discharge (Humphrey &
Weller, 1988), Sestokas et al. (1991) report that visual latency in
the LGN is not a straightforward function of amplitude or contrast.
Our preliminary simulations have shown that an explicit depen-
dence of discharge latency on stimulus location in the LGN model
is not necessary to account for a large body of experimental data
on the RF organization of cortical simple cells. Consequently, the
delay between the stimulus presentation and the beginning of the
firing was set to zero in all cases, irrespective of response ampli-
tude, stimulus contrast, or stimulus position.

Relevance of switching GRPs

Is it legitimate to model geniculate spike trains with renewal pro-
cesses? It has been shown that, during spontaneous activity, the
sequences of interspike intervals (ISIs) derived from geniculate
spike trains have a hidden temporal structure (Levine & Troy,
1986; Teich et al., 1997) such that dependencies exist between
nearby intervals (for example, an interval longer than average
tends to be followed by an interval shorter than average). On the
other hand, the intervals generated by a renewal process are by
definition independent. Therefore, strictly speaking, renewal pro-
cesses are not appropriate to model spontaneous geniculate spike
trains.

However, the GRP is attractive because it is mathematically
simple, depends only on two parametersl and r, and provides
reasonable fits in most cases (Teich et al., 1997). The suggestions
that have been made over the years to model geniculate sponta-
neous activity have used either basic GRPs (Munemori et al.,
1984), superpositions of GRPs, or random deletions of events from
a GRP (Bishop et al., 1964). Later, more sophisticated methods
have been developed with a view to incorporating the hidden tem-
poral structure into the simulated spike trains, but they were still
elaborations on the GRP: Levine and Troy (1986) proposed to
modulate the rate of a GRP with Gaussian white noise, and Teich

et al. (1997) found that a doubly stochastic GRP with fractal fluc-
tuations in the rate could account for both the short- and long-term
behavior (about 1 hr) of geniculate spontaneous firing.

Since the goal of our model was to simulate spontaneous and
visually evoked geniculate spike trains on the order of 1 s, we
considered that keeping the GRP as the core mechanism would be
appropriate, given that long-term correlations are negligible over
this time scale. The following sections explain why spontaneous
activity, phasic responses, and tonic responses have been modelled
with different regularity parametersr and how the values ofr have
been chosen.

Spontaneous discharge

We have chosen 10 spikes0s as a reasonable mean spontaneous
firing rate. Bishop et al. (1964) have shown that cells with such
activity levels are most often associated with under-dispersed
gamma-like or exponential-like (their Figs. 3A–3B), long-interval
histograms, and so-called type 1 short-interval histograms (their
Fig. 5). The narrow peak near zero in long-interval histograms
appears to be made of ISIs around 1–4 ms, which probably reflect
the contribution of high- and low-threshold bursts, according to the
criterion of Lo et al. (1991) (see short-interval histograms). If we
neglect the occurrence of bursts during spontaneous activity, this
allows us to smooth out the peak near zero in these histograms and
to consider the ISI distribution as an under-dispersed gamma (r .
1) or an exponential (r 5 1).

Also, Teich et al. (1997, Fig. 3B) show a typical geniculate ISI
histogram that decreases linearly (in semilogarithmic scale) for
interval durations greater than 50 ms, that is, for frequencies lower
than 20 spikes0s. This means that the empirically estimated inter-
val pdf is exponential (in linear scale) in a range containing the
level of spontaneous activity we chose. This is consistent, to some
extent, with spontaneous activity following a Poisson process. Ad-
ditional support that spontaneous firing is almost Poisson in the
anesthetized cat comes from Wilson et al. (1988, Fig. 1B). These
authors showed that the ISI standard deviation and the mean ISI
duration are linearly correlated with a slope close to one, which
implies r ' 1, by eqn. (5).

Visually evoked discharge

Identifying the kind of process that governs the visually evoked
discharge is a difficult problem since responses are highly nonsta-
tionary. Most studies have addressed the issue of intertrial vari-
ability either in terms of mean rate or in terms of ISIs. Hartveit and
Heggelund (1994) have shown that the variance of the mean firing
rate increases linearly with the mean rate, in response to a spot
flashed at different contrasts in the RF center. Levine et al. (1996)
have reached the same conclusion for geniculate X-cells (Levine
et al., 1996). Such a linear relationship is indeed what renewal
theory predicts [eqn. (7)]. These experimental results support the
assumption that visually evoked discharges follow a GRP.

What should be the value ofr for the segment of the switching
GRP associated with the visually evoked discharge? Wilson et al.
(1988) provide evidence that visual responses to an optimal cen-
tered spot flashed in the RF center follow a GRP withr . 1, since
the ISI standard deviationsT is linearly related to the mean inter-
val µT with a slope slightly below 1 [eqn. (5)]. In contrast, Hartveit
and Heggelund (1994) find that the variance of the estimated firing
rate calculated from 500-ms samples increases linearly with the
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mean rate with a proportionality factorn 5 4.51 6 2.13. This
combined with eqn. (7) yields an over-dispersed firing (r 5 0.44).
The evidence forr . 1 derived from Wilson et al. (1988) was
preferred over the result of Hartveit and Heggelund (1994) because
eqn. (5) relatesµT and sT to r in an exact and straightforward
manner, whereas inferringr from the estimated firing rateNt0t
makes it necessary to use eqn. (7), which is only anapproximation.

We used an under-dispersed GRP (r 5 5) to model phasic visual
responses for the following additional reasons: first, Hartveit and
Heggelund (1994) mentioned that, for several cells, the variance of
the firing rate decreases at high discharge rates, which is consistent
with a higher regularity for phasic responses than during sponta-
neous activity. Second, at high frequency as in the phasic response,
the cell refractory period (about 1 ms) is no longer negligible with
respect to the ISI. Using an over-dispersed gamma or exponential
pdfwould introduce very high frequency bursts, whereas an under-
dispersed gammapdf is a convenient way to incorporate a pseu-
dorefractory period. Third, at firing frequencies around 65 spikes0s
and above, the ISI is comparable to the mean duration of the
retino-geniculate EPSP (10–40 ms, Coenen & Vendrik, 1972), so
the low-pass filtering effect of the cell membrane would tend to
smooth out the jitter in the retinal input and make the membrane
potential variations more regular.

In the model, the strongest tonic discharge that can be obtained
(when contrastI 5 61) is 60 spikes0s, with an optimal spot, since
other stimuli would involve more CSA or less spatial summation in
the center or both. The choice of 65 spikes0s as the switching
frequency between high (r 5 5) and low (r 5 1) regularities guar-
antees that the more regular firing applies only to the phasic re-
sponse. Given the lack of quantitative data, modelling tonic visual
responses with simple Poisson processes was preferred.

Bursts versus single spikes

Unlike retinal ganglion cells, geniculate relay cells have a firing
pattern that can vary between two extremes, tonic and burst (e.g.
Sherman, 1996). Both modes have been shown to participate in ge-
niculate receptive fields (Guido et al., 1992; Guido & Weyand, 1995).
Bursts can have important synaptic effects and can convey signif-
icant visual information (Lisman, 1997; Reinagel et al., 1997). Up
to recently (Guido et al., 1992; Mukherjee & Kaplan, 1995), the dif-
ferential contribution of burst and tonic modes to geniculate visual
responses had not been stressed. To identify the intrinsic channel
properties responsible for the bursting activity patterns, Mukherjee
and Kaplan (1995) combined computational modelling and simul-
taneousin vivo recordings of the retinal input and spike output of
geniculate cells, and they stressed the critical role of the T-type cal-
cium current. Burst firing has been shown to make a strong con-
tribution to the initial phasic part of visual responses to gratings
(Guido et al., 1992) and flashed spots (Guido & Sherman, 1998).
Purely statistical analysis has shown that the initial phasic response,
which contains a mixing of bursts and single spikes, has a higher
regularity on average than either spontaneous activity or tonic re-
sponse (Wilson et al., 1988). Hence, the increased regularity of ge-
niculate firing during phasic response might directly reflect the
increased contribution of bursts. In contrast to Mukherjee and Kaplan
(1995), we do not model intrinsic channel properties explicitly, but
their statistical contribution to the geniculate firing is indeed taken
into account phenomenologically since phasic responses are gen-
erated with a high-regularity GRP. The influence of geniculate re-
sponse regularity in the early decision process of a network of cortical
simple cells is the subject of a forthcoming article.
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Appendix: Spatial integration of stationary bars and spots

The product of the stimulusR and the spatial filterG is defined by

p0 5 ^G,R& 5EEG~x, y!R~x, y! dx dy. (A1)

When the stimulusR~x, y! is the rectangular stationary bar shown in
Fig. 1A, with its axes parallel to the axes of coordinates~u 5 0!

p0 5E
x02a02

x01a02 1

#2ps
expS2

x2

2s2D dx

3 E
y02b02

y01b02 1

#2ps
expS2

y2

2s2D dy.
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Using theerror function erf~x! 5 ~20#p!*0
x exp~2t 2! dt leads to

p0 5
1
4FerfSx0 1 a02

s#2 D2 erfSx0 2 a02
s#2 DG

3 FerfS y0 1 b02
s#2 D2 erfS y0 2 b02

s#2 DG . (A2)

When the bar is tilted byu deg with respect to the abscissa~u Þ 0!, the
integral of eqn. (A1) is left unchanged as the coordinate system is rotated
by u deg to bring its axes parallel to the axes of the bar, since the Gaussian
is circular. Eqn. (A2) can then be used with a new center

x '0 5 x0 cosu 1 y0 sin u,

y'0 5 2x0 sin u 1 y0 cosu.

When the stimulus is a centered spot of diameterD, the output of the
spatial filter is

p0 5 12 exp~2D208s2!.

With stimulus contrastI ~t! defined as in eqn. (1), thetime-dependent
product of the stimulus and the Gaussian becomes

p~t! 5 p0 I ~t!. (A3)
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