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Abstract

We propose a macroscopic approach towards realistic simulations of population activity of cortical neurons, based on the known

refractory density equation and a new threshold model of neuronal firing. The threshold model is a Hodgkin–Huxley model that is

reduced by omitting the fast sodium current and instead using an explicit threshold criterion for action potential events based on the

derivative of the membrane potential. The membrane potential of the model realistically describes postspike refractory states and

postsynaptic current integration. The dynamics of a neural continuum are thus described by a partial differential equation in terms of the

distributions of the refractory density, where the refractory state is defined by the time elapsed since the last action potential, the

membrane potential and the potassium conductance, across the entire population. As a source term in the density equation, a probability

density of firing, or a hazard function, is derived from the equation assuming a Gaussian distribution of spike thresholds over the

population. Responses of an ensemble of unconnected neurons to stimulation by current step and sinusoidal inputs are simulated and

compared with simulations of discrete individual neurons. A synaptically connected population model is also evaluated and compared

with a model network of discrete neurons.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Individual cortical neurons operate within the back-
ground activity of neuron populations occupying large
areas of the cortex. Relative to the single-cell activity this
background activity is macroscopic, and therefore calls for
independent approaches for its mathematical description.
Whereas detailed single-neuron models are well developed,
there is no generally accepted biophysically meaningful
macroscopic model of neuronal ensemble activity. Our
approach considering a neural ensemble as a continuum in
a state parameter space is based on the ideas and methods
introduced in [9,18,23]. Similar approaches have been
e front matter r 2006 Elsevier B.V. All rights reserved.
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described in [11], where a review of the theories based on
the notion of a probability density function can be found.
However, the implementation of this theory proposed here,
based on a reduced and experimentally constrained single-
neuron conductance-based model, appears to be novel.
We apply the probability density approach (PDA) to

describe an infinite number of similar neurons as a
continuum. In contrast to population models of the firing
rate type [5,8,20,21,26], which are valid only for quasi-
stationary states of ensemble activity, a PDA can take into
account the relaxation properties of neurons and thereby
correctly calculate the firing rate in non-stationary
dynamical regimes [9]. In particular, the PDA presented
here describes the evolution of a neuronal continuum in the
phase space (PS) of a specific choice of neuronal state
variables. In general, if we consider the Hodgkin–Huxley
type conductance-based model of a single neuron, the state
variables include the membrane potential and those
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describing the ionic current conductances. To simulate
macroscopic processes in cortical tissue, such as extra-
cellularly evoked excitation of large populations of cortical
neurons, synchronized oscillations or traveling waves, a
model must reproduce stationary and non-stationary
modes of neuronal firing, as well as the effects of
refractoriness and, when present, the effects of slow ionic
currents. These considerations are possible in the frame of
a single-neuron model of the Hodgkin–Huxley type.

However, the large number of associated parameters for
the Hodgkin–Huxley model necessarily complicates the
equations for the ensemble dynamics. This is a major
reason that many approaches consider only one state
variable, the membrane potential, governed by the
integrate-and-fire or by the spike response model (SRM)
(e.g. [17]). Nevertheless, the membrane potential is only a
weak predictor of the neuron’s complete state, primarily
because neurons with different refractory states can have
the same potential. On the other hand, the time elapsed
since the last action potential approximates the refractory
state quite well. This relationship motivates a refractory
density approach [9,11], which considers the evolution of a
neuronal density distribution in the space of single
parameter, the time elapsed since the last spike, as a
particular case of the PDA.

The key element of the present work is that of implanting
a conductance-based neuron model into the PDA. To this
end, we first develop a threshold version of the experimen-
tally constrained Hodgkin–Huxley-like model, and we then
derive the appropriate refractory density equation (RDE)
for this model.

The value of the threshold potential in a biological
neuron is a dynamic variable that depends on the current
state of cell. The threshold model is obtained in Section 2.1
by omitting the fast sodium current from the Hodgkin–
Huxley equations, and in its place introducing a threshold
criterion that depends on the derivative of the membrane
potential. The corresponding membrane potential is
referred as the averaged sub-threshold potential over the
neurons of a given population, under the assumption that
the input current is equal for all neurons. Advantages of
the model in comparison with the integrate-and-fire and
SRM are outlined in this section and in the Discussion.

The approximation of the threshold as a function of the
potential slope in the present model is obtained by
comparing the solutions by the both biophysically detailed
and reduced single-neuron models in Section 2.2.

In Section 2.3 we write the equations of the refractory
density approach, or RDE. We have chosen the RDE as a
simple and precise PDA which distinguishes different
neurons in an ensemble by the time interval since their
last spike. The probability density in the space of this
interval is referred to as a refractory density [11]. In the
PDA neurons are grouped into large populations of similar
neurons. For each population, we form a probability
density that represents the distribution of neurons across
all possible states. The most complete version of this model
describes the state of a neuron with as many state variables
as the corresponding single-neuron model. In the simple
version of this model that is presented here, the state
variables of a neuron are assumed to be dependent on only
one parameter, that is the time elapsed since the last spike.
This parametrization reduces the dimension of the PS of
states of the classical Hodgkin–Huxley neuron from four to
one, yielding a set of one-dimensional partial differential
equations. We calculate the membrane potential and
potassium conductance, along with the refractory density,
by means of the threshold-Hodgkin–Huxley-based model
mentioned above, which serve to define the term governing
neural excitation in the RDE, referred to in [11] as the
hazard function.
The differences in intrinsic properties between neurons

within the given population, as well as fluctuations of any
stochastic currents affecting the neurons, are taken into
account by a distribution of threshold potentials. In
Section 2.4 we assume this distribution to be Gaussian
(though the derivations can be carried out for more general
distributions). With this distribution of the threshold
potentials, the firing probability density or the hazard
function as the source term in the RDE is derived.
In Section 3 we present the results of single population

simulations and comparison with simulations of an
ensemble of non-interacting neurons. We discuss the results
in Section 4.

2. Governing equations

Our implementation of the population density approach
is based on a threshold model constructed from the
conductance-based single-neuron model. Although the
approach could be generalized or reduced to other
simplified-neuron models, (see [18,17,11]), the population
model based on the proposed threshold neuron model is
low-dimensional, computationally efficient, biophysically
meaningful and matched to experiments. Based on the
threshold neuron, we then make a main assumption that
the state variables of the neuron are parameterized by a
single parameter, the time elapsed since the last spike,
which in turns allows the one-dimensional population
density description.

2.1. Single-neuron model

We now consider a single-compartment conductance-
based neuron model with Hodgkin–Huxley-like approx-
imations of the individual voltage-dependent currents. The
membrane potential V ðtÞ is governed by the equation

C dV=dt ¼ �INa � IK � IL � I i, (1)

where the transmembrane current is, for simplicity,
assumed to be a sum of only sodium and potassium
voltage-dependent currents, INa and IK, the leak current IL
and a synaptic or injected intracellular current I i. We
approximate the voltage-dependent currents according to
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[24]. According to this approximation, the sodium current
activation is instantaneous ðmðV Þ ¼ m1ðV ÞÞ, which allows
associating the threshold potential with the sodium current
activation potential, and helps to compare models in
Section 3. In comparison to the parameters used in [24], we
set the maximum potassium conductance gK ¼ 40ms=cm2,
and we assume the membrane area is equal to 0.01mm2.

To obtain the threshold neuron model we note that the
primary role for the sodium current is for pulse generation,
and assume that it has only a weak influence on the
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Fig. 1. The membrane potential, ionic currents and ionic conductances in the H

current except I i, i.e. Im ¼ INa þ IK þ IL. Note that the significant role for t

influence on the potential between spikes.
membrane current between spikes (Fig. 1). Accordingly, we
define a subthreshold potential UðtÞ as the membrane
potential of the neuron with the sodium current eliminated,
i.e. according to the equation

C dU=dt ¼ �IK � IL � I i. (2)

Below, in Section 2.2, we find the threshold value VT for
U. When the potential U reaches the threshold VT, it is
reset to the value U reset chosen to be equal to �40mV. The
gating variable for the potassium current, nreset

K ¼ 0:45, was
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measured at the descending phase of a spike, when U ¼

U reset in the full model based on (1). The membrane
potential and the gating variable nK are kept constant
following the threshold crossing for a duration
DtAP ¼ 1:4ms, corresponding to the duration of the action
potential. After this delay, the sub-threshold potential U

accounts for the postspike refractory period due to the
potassium current, according to the assumption that any
contribution to the membrane potential during the
refractory period from the sodium current is negligible.
Since the potential U satisfactorily approximates the
potential V on the interspike intervals, with properly
derived threshold criteria we can accurately calculate the
spike times.

In contrast to an integrate-and-fire neuron, the proposed
model automatically gives the refractory period and its
dependence on the strength of stimulating current. An
essential aspect of this model for the population density
approach is that given a subset of neurons with the same
input current and time since last spike, until a subsequent
spike the potential U of all the neurons in the subset is
uniquely defined and identical. Thus, the potential U can
be parameterized by the time passed since the last spike.

Note that this method can readily take into account
other ionic currents, for example a slow after-hyperpolar-
ization (AHP) current governed by the firing rate of a
neuron [6].

We now define the firing threshold for the potential U.
0 1 2 3 4 5 6 7
0

dU/ dt, mV/ms(B)

Fig. 2. The threshold potential VT as a function of the potential slope

dU=dt is calculated, comparing the solutions of Eqs. (1) and (2). (A) The

solutions obtained by the complete Hodgkin–Huxley model and the

threshold model for V ðtÞ and UðtÞ, correspondingly, given the injected

current I i ¼ 100pA. The value of U at the instant of the spike peak gives

the threshold potential VT. (B) The calculated dependence of the threshold

potential on the sub-threshold potential slope VT ¼ VTðdU=dtÞ.
2.2. Average threshold VT

The kinetics of the sodium channel depends on both the
instantaneous value of the potential and its history. Here
we rely on the simplest description of this dependence in
terms of the functional expression of the sodium current,
the action potential, by characterizing the average thresh-
old VT as a function of the dU=dt. To calculate this
dependence we use both the Hodgkin–Huxley model (1)
and its reduction (2). The dependence is obtained by
applying different current steps I i and solving Eqs. (1) and
(2) for the exact, V ðtÞ, and subthreshold, UðtÞ, potentials,
respectively (Fig. 2A). We then define the threshold as the
value of the potential U at the spike maximum for the
potential V, i.e. at t ¼ tAP; this value VT ¼ U jt¼tAP

, and the
corresponding dU=dtjt¼tAP

, gives one point of the desired
threshold function

VT ¼ VTðdU=dtÞ (3)

shown in Fig. 2B. This dependence satisfactorily approx-
imates the threshold in the case of arbitrary stimulation.
For example, for an input current oscillating at 10Hz the
maximum error of the predicted threshold was found to be
approximately 1.5mV.

Using the estimated dependence of spike threshold on
the voltage derivative the threshold model based on Eq. (2)
is completed. This model gives correct spike times for both
the first and subsequent spikes in a spike train in response
to a constant current step, when compared to the full
Hodgkin–Huxley model. The spike time precision for
arbitrary stimuli is better than that of an integrate-and-
fire model with fixed artificial refractory period, threshold
and reset potential (Fig. 3) and maintains this precision for
different stimulation amplitudes.
In comparison to the threshold dependence on the

voltage rate presented here, it has been proposed (e.g.
[13,15]) that a dynamic threshold relaxes after the spike
from a reset value to its steady-state level, according to a
first order differential equation. In terms of the time
elapsed since the last spike, t�, this rule may be expressed
as a function VT ¼ f ðt�Þ, where f is an exponen-
tially decreasing function. Thus, although this approach
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considers the time elapsed since the last spike, it does not
take into account the instantaneous state of the neuron,
e.g. the voltage rate, as does Eq. (3). Hence, this type of
approximation fails to account for spike timing during
unsteady synaptic input. For example, as seen in Fig. 3, the
thresholds for the first and following spikes of one spike
train are equal, whereas the dynamic threshold approach
from [13] would predict different values corresponding to
the steady state, t� ¼ 1, that is for the first spike, and to t�

equal to the appropriate interspike interval for the
following spikes. In comparison, since Eq. (3) considers a
local parameter of the state of the neuron, the voltage rate,
it can describe the response to arbitrary stimulation.

2.3. Population density approach

To describe the activity of a population of similar
neurons with common input current but different threshold
potentials, we consider the probability density, r, which
characterizes the number of neurons being in similar state
of activity. Strictly speaking, r is the fraction of neurons
per unit volume of the PS of neuron state parameters in the
mathematical limit of an infinite number of neurons. As
described, in order to avoid the complexity of a high-
dimensional description we reduce our consideration to a
one-dimensional version of the PS. Thus, we introduce the
one-dimensional PS with the state variable, t�, which for a
neuron is the time elapsed since its last spike (Fig. 4). This
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PS is characterized by two-independent variables, t, the
time, and t�, the density being the dependent variable,
r ¼ rðt; t�Þ. At any time t a small volume of the PS,
ðt�; t� þ Dt�Þ, contains the portion of neurons of a
population, equal to rðt; t�ÞDt�. The density rðt; t�Þ is
referred to as refractory density in [11]. The value rðt; 0Þ
represents the firing rate of the ensemble. By the analogy
with lagrangian and eulerian approaches in physics, we can
consider the evolution of the density distribution by either
tracing the coordinates (or t�) of single particles (or
neurons) or by calculating the fluxes of particles (neurons)
passing by the fixed point ðt�Þ. In the latter case we consider
any function f ðt; t�Þ as one of two-independent variables, t

and t�. To relate this function to a neuron with the
‘‘trajectory’’ t� ¼ t�ðtÞ, we formulate the rate of change by
the so-called substantial derivative

df

dt
¼

qf

qt
þ

qf

qt�
dt�

dt
. (4)

Trivially, up until the next spike the time since the previous
spike is proportional to the time itself, i.e. dt�=dt ¼ 1.
Thus,

df

dt
¼

qf

qt
þ

qf

qt�
. (5)

To describe the temporal evolution of rðt; t�Þ, we note that
during periods in which the neurons do not fire the value of
the refractory density at ðt1; t�1Þ would be equal to that at
ðt1 þ Dt; t�1 þ DtÞ with small Dt, i.e. dr=dt ¼ qr=qtþ

qr=qt� ¼ 0. When neurons do fire, by definition they
instantly move to the point t� ¼ 0. The rate of firing for
neurons with some value of t� is proportional to the density
of neurons at that point, rðt; t�Þ, and the probability for a
single neuron to fire in a unit time, F. Thus, dr=dt ¼ �rF .
The function F is referred to in [11] as the hazard function
or the spike-release probability density. Substituting the
substantial derivative d=dt ¼ q=qtþ q=qt�, we obtain that
the evolution of r is governed by the transport equation
with a source:

qr
qt
þ

qr
qt�
¼ �rF . (6)

To define the spike-release probability density, F, we first
consider it to be a function of both U and VT, thus
F ¼ F ðUðt; t�Þ;VTÞ, i.e. the probability for a neuron to
release a spike during the interval ½t; tþ Dt�, FDt, depends
on its subthreshold membrane potential U ¼ Uðt; t�Þ and
on the distance to the threshold VT. This dependence
implies comparison of U with the threshold potential VT

averaged over the ensemble, which has been calculated in
Section 2.2.

The density r is normalized as follows:Z 1
0

rdt� ¼ 1. (7)

As stated, when they spike neurons return to the point
t� ¼ 0. This fact is reflected by the boundary condition for
Eq. (6), which follows from Eq. (6) and the normalization
Eq. (7):

rðt; 0Þ ¼
Z 1
þ0

rF dt�. (8)

As mentioned above, the value rðt; 0Þ is the firing rate of
the ensemble. In a stationary or quasi-stationary regime,
rðt; 0Þ corresponds to the firing rate of a single neuron with
a mean threshold VT.
To define the membrane potential U for all t�, we rewrite

Eq. (2) by substituting the total derivative
d=dt ¼ q=qtþ q=qt�. Along with the equation for the
potassium conductance, we get

C
qU

qt
þ

qU

qt�

� �
¼ �IK � IL � I i, (9)

with

IK ¼ gKnðU � VKÞ;
qn

qt
þ

qn

qt�
¼

n1 � n

tn

. (10)

Approximations for n1 ¼ n1ðUÞ, tn ¼ tnðUÞ, can be taken
from [24]. According to the threshold model described
above, the voltage and the potassium conductance are
constant during the latter half of the spike, i.e.
Uðt; t�Þ ¼ U reset, nðt; t�Þ ¼ nreset

K for 0ot�oDtAP, i.e. the
boundary conditions for the Eqs. (9) and (10) at t� ¼ DtAP

are Uðt;DtAPÞ ¼ U reset, nðt;DtAPÞ ¼ nreset
K .

We now define the function F, given the membrane
potential U and its time derivative.
2.4. The spike-release probability density, F

A formula to calculate the spike-release probability
density F should consider a model of noise and the
variation of the cellular parameters over the entire neuron
population. For the sake of simplicity, here we assume that
the functional impact of these distributions may be
expressed by a dispersion of the threshold potentials VT

over the population, and thus F may be expressed as

F ¼ F ðU ;VTÞ, where VT is the mean threshold value. To
derive F, then, here we assume a Gaussian distribution of

thresholds VT, relative to the rest potential, with the mean

value VT and dispersion s:

f s
ðVTÞ ¼

1ffiffiffiffiffiffi
2p
p

s
exp �

ðVT � VTÞ
2

2s2

 !
.

Hence, the function F ¼ F ðU ;VTÞ can be derived from its
definition, Eq. (6), i.e. F ¼ �ð1=rÞ=ðdr=dtÞ. For simplicity,
we analytically consider the case of a gradually increasing
potential, UðtÞ, in an ensemble of neurons which all have
identical stimulation. At the beginning of the stimu-

lation rð0Þ ¼ r0, Uð0Þ ¼ V rest. For a given value of UðtÞ,
the threshold model gives the density rðtÞ ¼ r0ð1�RUðtÞ�V rest

�1
f s
ðVTÞdVTÞ. Using the Eq. (6) for the total
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derivative of time, we obtain

F ¼ �
1

r
dr
dt
¼ �

1

r
qr
qU

dU

dt
¼

dU

dt

f s
ðUðtÞ � V restÞ

1�
RUðtÞ�V rest

�1
f s
ðVTÞdVT

.

Substituting the Gaussian distribution of VT, we get the

spike-release probability density F ðU ;VTÞ

F ðU ;VTÞ ¼
dU

dt

1

s
~F

U � V rest � VTffiffiffi
2
p

s

 !
, (11)

where

~F ðxÞ ¼

ffiffiffi
2

p

r
expð�x2Þ

1� erfðxÞ
.

The obtained dimensionless function ~F ðxÞ is shown in
Fig. 5. This function characterizes how the firing prob-
ability of a neuron depends on the dimensionless potential
x compared to the threshold value x ¼ 0.

Thus, we obtain a system of Eqs. (3), (6), (8)–(11)
governing the activity of a neuronal ensemble.
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Fig. 6. The transient response of the population firing rate to a rapid

change in input. (A) Beginning at t ¼ 0, the excitatory input current to the

uncoupled neurons of a single population stepped up to 300 and 500 pA,

correspondingly in a and b. The firing rate transiently jumps up before

returning to a new steady-state response. The population model firing rate

(solid line) compares with the averaged firing rate of individual

Hodgkin–Huxley neurons. Two cases with and without renewal of the

dispersed thresholds after the spikes are shown in the dotted and dashed

lines, correspondingly. In Ac the responses to oscillating input current of

500 pA amplitude and 10Hz frequency are shown for the same models as

in Aa, b. (B) Distributions of the potential Uðt�Þ and density rðt�Þ across
the time elapsed since the last spike, at the time moment t ¼ 100ms,

corresponding to Aa.
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3. Results: population and individual neuron simulations

In this section, we present simulations for a population
of uncoupled neurons, and simulations for a population of
coupled neurons, in both cases where all the neurons
receive the identical input from an external source. For all
simulations the threshold potentials are normally dispersed
with the dispersion s ¼ 2mV. We compare the population
density approach with the direct simulation of a population
of individual neurons.

The population density equations were solved numeri-
cally using the finite-difference total variation diminishing
(TVD) scheme [12] with second order approximations in
both directions of the independent coordinates. In response
to a rapid change in input, the firing rate transiently jumps
up before returning to a new steady-state response
(Fig. 6A). The distributions of the potential U and the
density r in the PS at one instant in time are shown in
Fig. 6B. The steep gradient of the density corresponds to
near-threshold potentials.

The population density represents the fraction of
neurons per unit time t� in the mathematical limit of an
infinite number of neurons. Thus for the direct simulations
of explicit neurons we considered a large population of
Hodgkin–Huxley neurons and compared their dynamics
with the predictions from the population density approach.
As an analog to the threshold variability defined in the
population density approach, in the explicit simulations the
midpoint of the sodium channel steady-state activation
characteristic m1ðV Þ for each neuron was taken at random
from a Gaussian distribution with a dispersion s ¼ 2mV.
Numerical results were obtained using 4000 neurons for the
direct simulation and using 200 nodes in the population
approach, corresponding to the discretization in the
t�-space. As seen in Fig. 6A the simulated rates of the
individual neuron models and of the population model are
similar. The timing and amplitude of the first maximum are
well reproduced by the population model. The discrepancy
in the following peaks is mainly due to the implicit renewal
assumption taken for the spike-release probability function
in the population model. Thus after each spike a new
threshold value of a neuron in population model is
independent of its value before the spike. In comparison,
each individual neuron of the explicit simulation keeps its
threshold value that was determined prior to the simula-
tion. As a result, a neuron with a low threshold fires earlier
and earlier at every peak of the population firing rate, and
likewise one with a high-threshold fires later and later at
every peak, resulting in a greater dissipation of the firing
times over the population as a whole.

To verify this interpretation, we considered an alter-
native model of the neural parameter distribution in the
direct simulations. Thus, we assumed a renewal process for
the midpoint of the m1ðV Þ after each spike for each
neuron, chosen from the same Gaussian distribution. This
model is similar to so-called slow-noise models, as
described in [11]. In this case the firing rate calculated by
the proposed population model and by the direct simula-
tions coincide, as shown in Fig. 6Aa,b by the dotted lines.
We next demonstrate the ability of the proposed model

to respond to more complex stimulation, applying a
sinusoidal input current with an amplitude of 500 pA and
frequency 10Hz (Fig. 6 Ac). Comparison of the rates of the
individual neurons in direct simulations and of the
population model shows similar responses, with population
spikes at the peaks of the stimulating current. As in the
previous examples, the match between the population
model and the pooled activity of the individual neuron
models improves when the latter incorporates a renewal
process for the voltage dependence of the sodium channel
activation. The remaining discrepancy between the
approaches arises primarily for the following two reasons.
First, the precision of the single parameter approximation
for the threshold potential, dependent on the potential rate,
is limited. Second, the sensitivity of the membrane
potential to the input just prior to a spike is different
between the Hodgkin–Huxley and threshold neuron
models, due to the sub-threshold activation of the sodium
channel in the former.
The proposed formulation may also be applied for

synaptically connected networks. To demonstrate this
point we simulate the activity of a recurrent interneuron
network including all-to-all connectivity by inhibitory
synapses. In this case the input current consists of two
terms, I iðtÞ ¼ I extðtÞ þ ISðtÞ. The first term, I ext, is the
applied external current, taken to be 500 pA and starting at
t ¼ 0 in Fig. 6Ab. The second term ISðtÞ is the synaptic
current governed by the population firing rate, i.e.

ISðtÞ ¼ gSðtÞðUðtÞ � VSÞ, (12)

t2S
d2gSðtÞ

dt2
þ 2tS

dgSðtÞ

dt
þ gSðtÞ ¼ gSnðt� tdÞ, (13)

where nðtÞ is the population firing rate, here expressed as
number of spikes per unit time (ms). As noted previously
for the population model nðtÞ is given as rðt; 0Þ, whereas for
the direct simulation nðtÞ is given by the number of spikes
per unit time, normalized over the total number of
neurons. The remaining terms are equivalent for the two
models: tS is the synaptic time constant, td is the synaptic
delay, gS is the maximum synaptic conductance, and VS is
the synaptic current reversal potential. For purposes of
illustration the following values were used here: tS ¼ 3ms,
td ¼ 1ms, VS ¼ �80mV, gS ¼ 7ms=cm2. As shown in
Fig. 7 the population model shows quite similar behavior
to simulations of a recurrent network made of explicit
individual neurons. The mismatch in this case is due to the
reasons mentioned above for the case of oscillatory input,
but here amplified by the feedback term given by the
synaptic integration. In contrast to the uncoupled neuron
population (Fig. 6Ab), the recurrent network passes from
the transient activity into the steady-state oscillations. We
propose that these oscillations relate to the physiological
gamma-oscillations, given that one suggested mechanism
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of gamma-oscillations involves an inhibitory neural popu-
lation undergoing tonic excitation [16,22,25]. The resulting
oscillatory activity of the interneurons, as represented by
the network modeled here, is reflected in the recorded
activity of principal excitatory cells.
4. Discussion

A novel modification of the population density method
has been proposed for modeling large groups of neuron.
The method is simple yet captures the main details of the
dynamics of real neurons and networks, namely, the
refractoriness due to the sub-threshold influence of the
potassium current, a dynamic threshold for action poten-
tials, and the impact of variability in intrinsic cell proper-
ties and in synaptic input. Here we outline the advantages
of the model and its possible extensions.

Previous population density approaches for studying the
dynamics of neuronal populations have considered dis-
tributions of neurons across either the membrane voltage
or the time passed since the last spike. The former method
has been based on the integrate-and-fire neuron
[17,11,1,18,3,10]. The latter method, that is the refractory
density approach, is based on the SRM [9,11,2,15]. As a
more general single-neuron model than the integrate-and-
fire neuron, the SRM can more precisely describe the
neuron dynamics. Moreover, in contrast to the membrane
potential, the time since the last spike monotonically
changes with time (modulo spike times) and better
describes the state of a neuron, in particular, its refractory
properties. Although in general the input to a neuron is
composed of a current term and a conductance term [19],
the SRM considers only input current [11,15], and thus the
shunting effect of the input is neglected.
The refractory density approach proposed in the present
paper is based on a single-neuron model which is different
from the SRM. The SRM supposes that the membrane
potential is a sum of a term reflecting the evoked spike and
a postsynaptic term reflecting the synaptic input. The parts
are constructed to be independent to obtain a unique sub-
threshold voltage curve for a set of neurons with different
thresholds. In contrast, the present paper states that
instead of the decomposition it is sufficient to omit the
sodium current when calculating the potential relative to
the spike threshold. As a consequence, the approach has
several advantages to the SRM-based RDE approach and
other known one-dimensional population models. First,
the threshold calculated as a one-parametric dependence
on the potential slope provides better accuracy because it
implicitly reflects the activity of the omitted sodium
channels. Second, using the current approach it is possible
to take into account additional fast ionic currents as well as
slow currents averaged over the cell population [6], due to
the explicit conductance-based formulation of the ap-
proach. Third, the spike-release probability density func-
tion F, or ‘‘hazard function’’, directly follows from the
RDE and assumed (here, Gaussian) distribution of thresh-
olds in neurons. Finally, the current model is described by
partial differential equations, which are easier to solve than
integral–differential equations such as used in [11,17].
The single-neuron conductance-based model at the heart

of the method proposed here can be explicitly matched to
experiment. Since, as shown, the proposed threshold model
well reproduces the sub-threshold voltage and the spike
times of the full neuron model, it is well suited as well to
model an experimentally recorded neuron. Moreover, the s
dissipation parameter of the refractory density model can
be directly estimated from repeated experimental trials of
spike trains in one or many neurons. It should be pointed
out that in the present paper the single-neuron model was
taken as known from [24], thus the threshold dependence
on potential slope and the spike reset parameters were
directly measured from the full neuron model. In the
density equations evaluated here, as well, the threshold
dispersion s was fixed to a reasonable value and thus was
not adjusted in order to provide a better match to the direct
simulations. Hence, particularly, the situation considered
here with the stimulation of the current step response is not
the special case for the model.
The computational efficiency of the population modeling

in the framework of the density equation is signi-
ficantly better than that of the direct simulation of
explicit individual neurons. In particular, for the proposed
model this follows as it belongs to the class of one-
dimensional density equation approaches, for which
estimations of computation efficiency can be found in
[17,11]. These results, which are consistent with our
observations for the simulations presented here, demon-
strate that the population density approach is between 10
and 100 times faster than the individual neuron
simulations.
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Thus, the proposed approach provides certain advan-
tages when used as the core of a model of cortical tissue
activity. For example, a two-population model of hippo-
campal CA1 has been constructed by the authors [6], which
simulates extracellularly stimulated postsynaptic responses
in neurons, as well as gamma-oscillations. The extensions
made for the model to be fitted to the experiments are as
follows: (i) A novel two-compartment cellular model has
been proposed [7] to coordinate voltage clamp with current
clamp whole-cell patch recordings in cortical slices. In
contrast to the known Pinsky–Rinzel model, the proposed
model uses somatically measured synaptic currents which
makes it more applicable to the population approach. (ii)
The somatic synaptic currents I i have been approximated
by a second order differential equation with a presynaptic
firing rate as a source term. There is a robust correspon-
dence between the two-exponential curve and the somati-
cally measured synaptic current in response to a brief
stimulus for different types of dendritic trees and synapse
populations. (iii) The AHP-current has been taken into
account for a population of pyramidal cells, considering
AHP-conductance as being governed by the firing rate. (iv)
Finally, to consider the spatial propagation of neural
activity, such as traveling waves, the wave-like hyperbolic
partial differential equation [14] has been applied in [4],
which treats only local connections, in terms of somatic
and pre-synaptic firing rates. Coupled with the remaining
equations, the approach predicts traveling waves moving
with a velocity dependent on the ratios of synaptic
strengths.

In summary, in this paper we develop a refractory
density approach using a threshold conductance-based
neuron model. The proposed approach provides certain
advantages over previously developed refractory density
approaches based on a SRM. The model of a single
population of neurons demonstrated here can be used as a
core of a population model of cortical tissue, that can be
quantitatively fitted to intracellular experimental data
recordings. The reduced evaluation time of the proposed
refractory density approach should facilitate modeling
more complex neural networks, as compared to the
evaluation of networks based on explicit individual neuron
models. Thus, the refractory density approach may be an
important tool for the implementation of truly large-scale
models of the networks in the brain.
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